SuperKEKB LS1 upgrade status (including injector)

Hiroyasu EGO

KEK Injector Linac division

Operation of SuperKEKB in 2022

 Upgrade works Main rings / Injector linac

• Summary

Contents

Countermeasures for high luminosity in LS1

Operation of SuperKEKB in 2022

Achievements

 $Lp = 4.65 \times 10^{34} \text{ cm}^{-1}\text{s}^{-1}$ $L = 424 \text{ fb}^{-1}$

lp = 1.46 Ale = 1.14 A

Improvements

- (1) e-: The septa in operation at 25Hz
- (2) e+: Fast strip-line kicker for the 2^{nd} bunch orbit correction
- ③ HER: Horizontal orbit feedback system

To be improved

④ e-: Give-up of two-bunch injection due to 2nd bunch drift of the vertical orbit

(5) e+ Decrease in charge due to the BP diamond aborts

3

Countermeasures for high luminosity in LS1

Planned countermeasures

• Major countermeasures discussed so far.

	Aim	Possible
_		Linac upgrade to designed specificat
(1	Increase injection power (efficiency)	Large physical aperture at electron in
	(emorency)	Linac upgrade beyond designed spec
	 Relax beam-beam effect Expand dynamic aperture 	Utilizing rotatable sextuplole magnets
(2		"Perfect matching"
(-		QCS modification (Option#1): Move (
		Larger scale QCS modification (Option
	Suppress BG	QCS cryostat front panel modification
(3	B) · Expand physical	Optimization of collimator location
	aperture	Enlargemen of QCSR beam pipe (Op
(4	• Relax TMCI limit	"Non-linear collimator"
/ 5) Improvo stability	Robust collimators
(:	s improve stability	Upgrade of beam abort system and le
(6	• Anti-aging measures	Preparation of standby machines and
·	2021/9/2	

Super KEKE

- Major work items in accelerator tunnel:
 - Disassembly and reinstallation of concrete radiation shields
 - Belle II maintenance & reinforcement work
 - Disassembly and reinstallation of magnets, beam pipes for QCS work

LS1 works of the main rings : HER injection point

- Vacuum work at HER injection section:
 - 3 beam pipes are replaced with new ones to increase injection rate.
 - Orbit clearance from chamber wall is enlarged by changing wall position along beam axis.
 - Wall length along the beam axis is shorten as much as possible.
 - Pumping port will be removed to ۲ shorten wall length if possible.
 - New BPM for injected beam is installed for precise injection tuning.
 - Schedule
 - Production : JFY2022 (~ March/2023)
 - Beam pipe replacement : JFY2023 (April/2023 ~)

New wall e⁻ Beam

LS1 works of the main rings : NLC

Wiggler beam pipe removal work

K. Shibata The 26th KEKB Accelerator Review Committee

LS1 works of the main rings : Others

Robust collimator head (LER)

- As countermeasure against kicker-pulser misfiring and resulting destruction of collimator
 - Replacement with carbon head of horizontal collimator D06H3 and relocation from D06H1 to D06H4
 - Carbon head production : ~ March 2023
 - Head replacement : Spring ~ Summer 2023
 - Collimator relocation : Spring ~ Summer 2023

New beam pipes with wider aperture at HER injection point

- For injection efficiency improvement
 - New beam pipes with wider aperture & New BPM for precise measurement of injected beam
 - Beam pipe production : \sim March 2023
 - Beam pipe replacement : Spring ~ Summer 2023
 - Septum baking : ~ Summer 2023?

RF cavity modification and replacement (LER)

- For stable operation with larger beam current
 - Modification : Input coupler replacement, cooling power enhancement, coaxial line modification, etc. (done)
 - Cavity replacement (D05A) : January ~ February 2023

Vacuum seal replacement at RF section (DR)

- For pressure reduction •
 - Replacement from elastomer gasket to metal gasket for dummy pipes (done)

DR Extraction kicker power supply modification and repair (DR)

- For stable operation
 - Modification : December 2022 ~ August 2023 •
- An<u>d so on...</u>

K. Shibata The 26th KEKB Accelerator Review Committee

LINAC upgrades : Schedule

	2018	2019	2020	20	
	New S-band structure				
1		4 prototypes	tests & installation		
	Design			12 struct	
			New pulse co	ompressor	
2		Design	prototype	real #1	
(3)				Des	
4			Design	Proto	
(5)					
6					
	LINAC has r	no LS1 becau	se of injection	to SR I	

LINAC upgrades : Difficulty in stabilizing beam condition

Best tuning condition is destroyed gradually in a day

Beam orbit and emittance of etuned fine in the morning Beam orbit unstable and emittance worse charge lost in the afternoon

11

Upgrade works : Difficulty in stabilizing beam condition

Best tuning condition destroyed by change in air temperature arising from seasonal and daily conditions

UPGRADE : Renewal of air conditioners for the klystron gallery and linac tunnel (2022 - 2023)

LINAC upgrades : Beam tuning

Manual adjustment of magnets upstream and accelerating phase of the sectors 3 to 5 by using beam-destructive profile monitor

UPGRADE : Automatic adjustment by using none-destructive monitor (2022-2025)

LINAC Upgrades : Beam-degrading areas

BPAC Feb. 19, 2023

14

LINAC upgrades : Beam optics 1

Large-aperture pulsed Q magnet & High-speed pulse kicker

Linac upgrades : Beam optics 2

- The four pulsed Q magnets can optimize both the eand e+ beams, the betatron functions can be decreased.
- Simulations shows that they can help to decrease the emittance growth to less than half.

Linac upgrades : Injection efficiency

BTe-ECS (Energy Compression System)

ECS reduces the longitudinal emittance of electron beams for HER

Installation plan in BTe

S-band 3m-long TW structures

- Design of the components have finished.
- High-power RF sources are under construction.
- Component layout are in the process of design.
- **3m-long TW accelerating structures ready for high-power conditioning**

Simulations for best operating parameters

by the beam-analysis group

N. Iida, T. Yoshimoto

Results:

- Longitudinal emittance, 2Jz, becomes small by ECS.
- Even with $R_{56} = -0.6$ m Vc = 70 MV, 2Jz can be lower than the energy acceptance of HER.
- Investigation with a parameter of $R_{56} = -1.0$ m will be done soon.

Linac upgrades : Accelerating structures

New S-band structure

Discharged damages

Water leakages

• Mitigation of accelerating structure failures

New pulse compressor

New S-band 2m-long TW accelerating structure

Super-compact pulse compressor

• Originally designed for 8 MeV/m (PF injector), but used at 20 MeV/m (KEKB upgrade) • Degradation that lead to high field emission rate and discharges • Water leaks, field emission, discharge in waveguide, and so on (29 of 60 units have some problems) • Not only future Y(6S) but even Y(4S) could be suffered

• 5-year upgrade plan to fabricate and install new accelerator structures (FY2018 – FY2022) • 4 units (16 acc. structures) will be replaced by new one. (Unit44 was replaced in this summer) • New acc. structure: acc. gain up 7%, surface field down 20% (reduce breakdown) • **Suppression of instabilities** arising from long-range wakefields • New pulse compressor (SCPC) was also developed and installed in Unit44. H. Ego

- Achievements; le = 1.14 A, lp = 1.46 A, Lp = 4.65 x 10^{34} cm⁻¹s⁻¹ and recorded int. L = 424 fb⁻¹
- Fatal shortage of operation time due to incredible increase in electricity costs •
- Main ring upgrades in LS1
 - IR works
 - Non Linear Collimator (NLC) installation
 - Beam pipe replacement at the injection point of HER for large physical aperture \bullet
 - Etc
- LINAC Upgrades
 - No LS1 because of beam injection for not only SuperKEKB but also the SR rings

 - Fast kicker for 2nd bunch orbit correction
 - New accelerating structures against deterioration over time
 - Replacement of air conditioners
 - ECS in the electron BT
- Severe difficulties in procurement for electric devices, materials and so on

Summary

• Beam optics improvements by installing new large-aperture pulsed Quads at J-arc and positron capture section

Appendix

- - W to SUS.

14th Dec. 2022

The 26th KEKB Accelerator Review Committee

11

LINAC status : S-band Linac Layout & Energy Scheme

Simultaneous top-up beam Injector for four storage rings

60 klystron-units and 226 accelerating structures

LINAC status : Electron Charge History 2020a to 2022c for HER

<u>e- emittance</u>

Measured Enx,ny (2 nC) : $20/20 \mu m$ (at BT1)

Goal : Enx,ny (4 nC) : 40/20 (H/V) μm

LINAC status : Positron Charge History 2020a to 2022c for LER

e+ bunch charge [nC]

ARC Recommendations

- R7.1: Perform systematic measurements of the orbit jitter of the two electron bunches and correlations with possible sources. Advance the synchronous data acquisition between Linac and BT.
- R7.2: More generally, perform a feasibility study for the implementation of synchronous beam data acquisition, which lacksquarewill be extremely useful for studying drift and instability. Improve the analysis tools using the synchronous beam, rf monitor, pulsed magnet data
- R7.3: Implementation of an orbit feedback if the use of pulsed magnets allows for this. **Orbit FB with pulsed magnet is already in operation (Sectors 3-5).**
- R7.4: Continue with the upgrade plan as presented in the summary slide. In progress
- R7.5: Concerning the emittance growth of the second electron bunch, study the effect of long range-wakes in the linac. Fast kicker for 2nd bunch orbit correction could mitigate the 2nd bunch emittance growth.
- R7.6: Identify the causes limiting the charge of the electron bunch along the injector. Simulation work and beam study are being conducted.
- R7.7: Discover the loss locations and causes for the positron transport in the linac. Simulation work is now in progress. Beam matching after e+ target will be tested soon to reduce the beam loss.