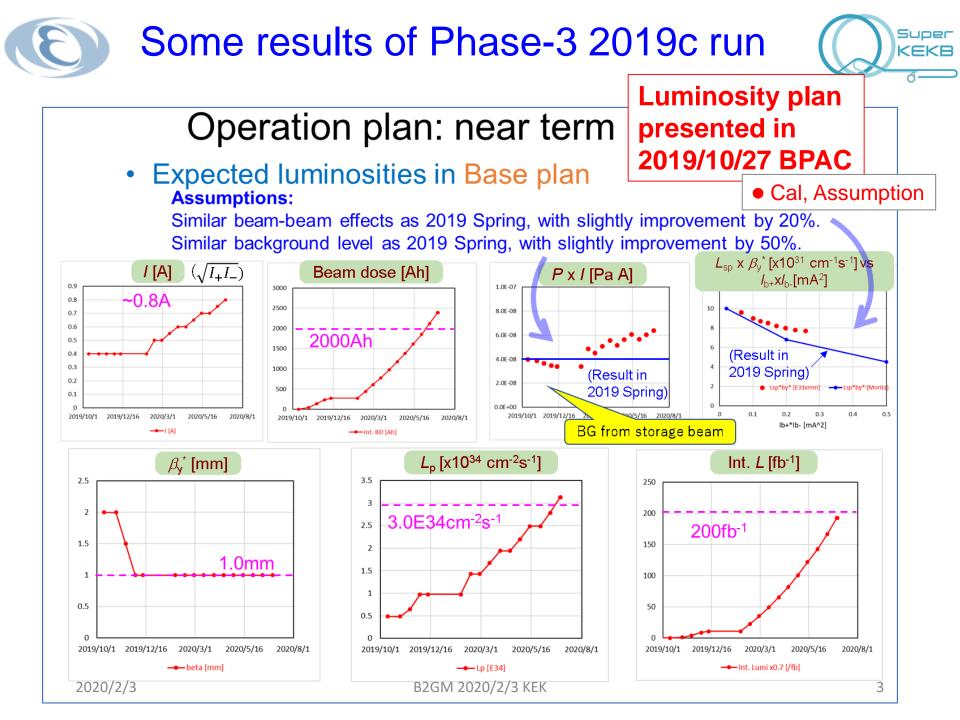
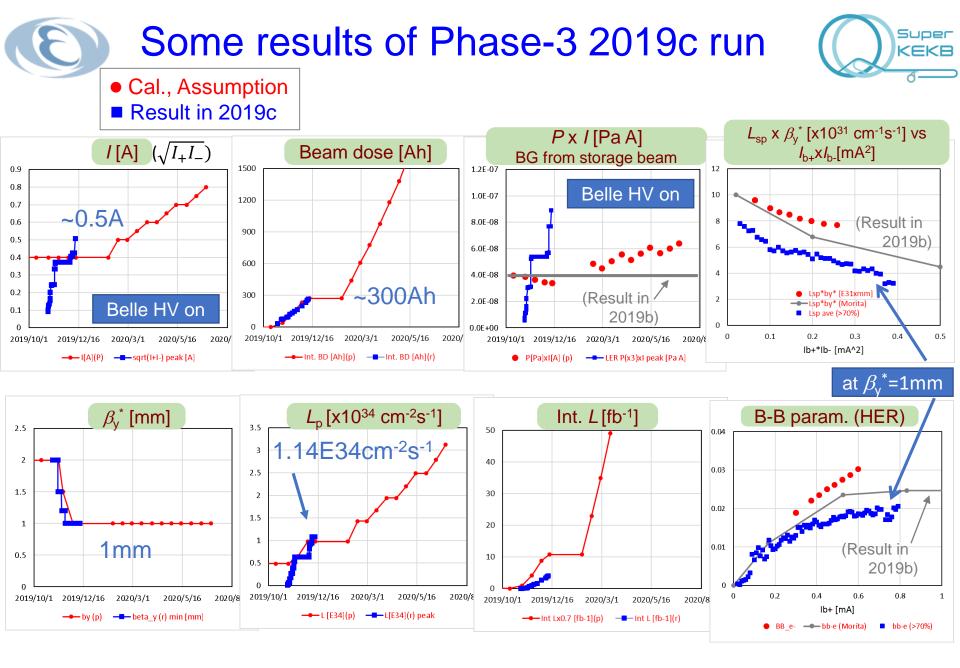


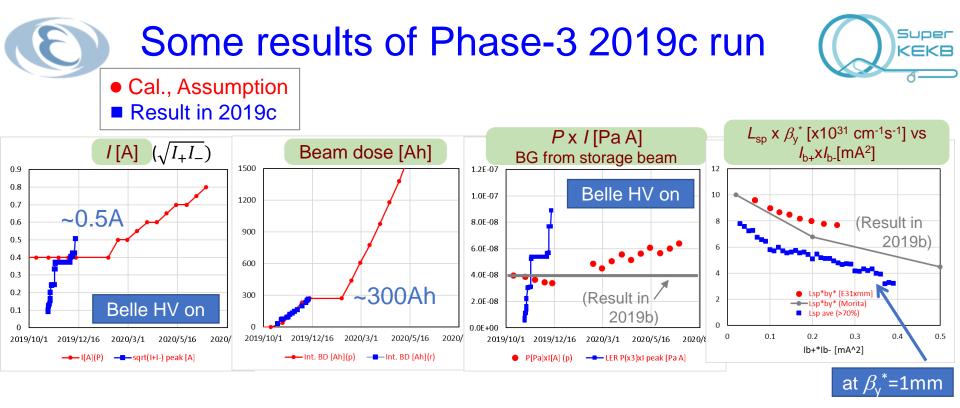
Operation plans and Luminosity projections: - near-term and middle-term -

Y. Suetsugu

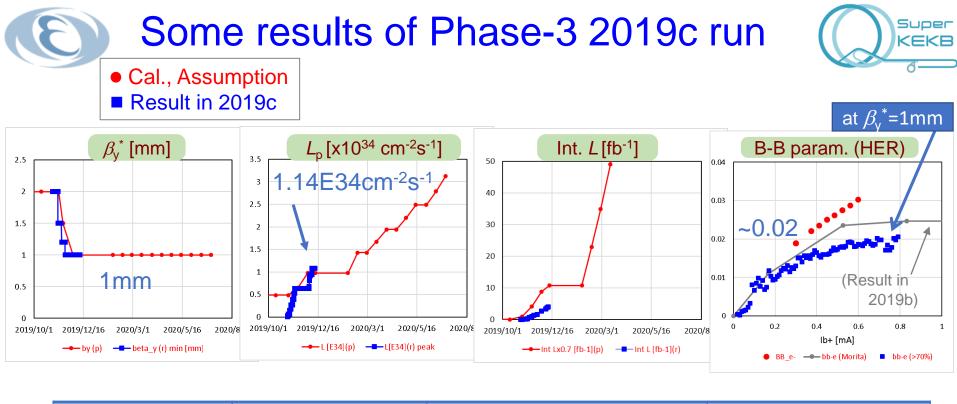
Accelerator Laboratory, KEK


B2GM 2020/2/3 KEK



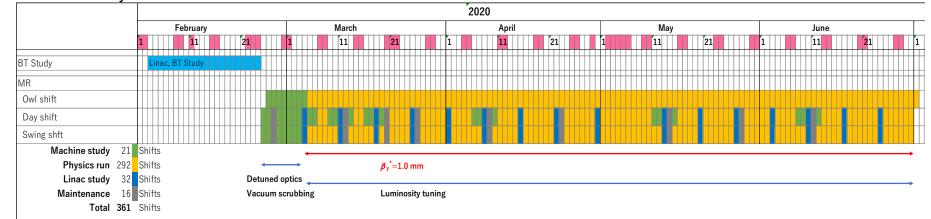


Contents


- Some results of Phase-3 2019c run at a glance Details were covered by Ohnishi-san
- Operation plans and luminosity projections
 - Near term (~2020/June, ~2021/March=FY2020)
 - Middle term (~2023/March=FY2022)
- Summaries

Beam currents	Beam dose	<i>P</i> x <i>I</i> (a measure of BG from storage beam)	$L_{\rm sp} \ge \beta_{\rm y}^{*}$ (a measure of BB effect)
Almost achieved	Achieved	Higher than expected	70~80% of expectation
		Collimator tuning Baking of collimators Vacuum scrubbing	

β_{y}^{\star}	Luminosity	Integrated luminosity	Beam-Beam parameter (HER)
Achieved	Achieved	~50 %	70~80% of expectation
		Low currents during phys. run Short time for phys. run	Need more study and tuning


• Here the luminosity projection was re-evaluated based on the 2019c result and operation plan.

(1) Base (conservative) plan

Assumptions:

- 1) 2020a run starts from 2020/3/2.
 - LER starts 2020/2/25 for vac. scrubbing and tuning.
- 2) 2020a and b runs are basically dedicated to physics run. (~100 days for physics run)

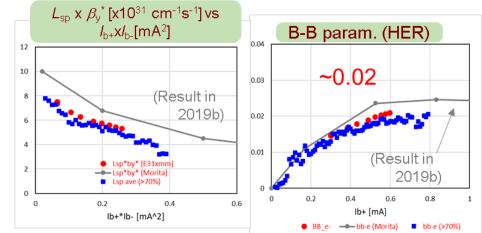
Note: Details of the commissioning plan was reported by Ohnishi-san. 2020/2/3 B2GM 2020/2/3 KEK

• Here the luminosity projection was re-evaluated based on the 2019c results.

(1) Base (conservative) plan

Assumptions:

- 1) 2020a run starts from 2020/3/2.
 - LER starts 2020/2/25 for vac. scrubbing and tuning.
- 2) 2020a and b runs are basically dedicated to physics run. (~100 days for physics run)
- 3) β_v^* is kept at 1 mm.
- 4) BG from injection beams is improved. (stable injection, low emittance)


An essential point in the future commissioning!

• Here the luminosity projection was re-evaluated based on the 2019c results.

(1) Base (conservative) plan

Assumptions:

- 1) 2020a run starts from 2020/3/2.
 - LER starts 2020/2/25 for vac. scrubbing and tuning.
- 2) 2020a and b runs are basically dedicated to physics run. (~100 days for physics run)
- 3) β_v^* is kept at 1 mm.
- 4) BG from injection beams is improved. (stable injection, low emittance)
- 5) Using proven beam-beam effect in 2019c.

• Here the luminosity projection was re-evaluated based on the 2019c results.

(1) Base (conservative) plan

Assumptions:

- 1) 2020a run starts from 2020/3/2.
 - LER starts 2020/2/25 for vac. scrubbing and tuning.
- 2) 2020a and b runs are basically dedicated to physics run. (~100 days for physics run)
- 3) β_v^* is kept at 1 mm.
- 4) BG from injection beams is improved. (stable injection, low emittance)
- 5) Using proven beam-beam effect in 2019c.
- 6) Similar background level (storage beam) as 2019c.
- 7) Expecting vacuum scrubbing of LER(Decrease in dP/dI is proportional to 1/BD). → Increase in beam currents.
- 8) Efficiency of integrated luminosity is 70% of peak luminosity.
- 9) 1576 bunches

Operation plans and luminosity projections Super KEKB 1. Near term-1 (~2020/June) Cal., Assumption (1) Base (conservative) plan Result in 2019c $L_{\rm sp} \ge \beta_{\rm v}^* [x10^{31} \text{ cm}^{-1} \text{s}^{-1}] \text{ vs}$ P x I [Pa A] $I[A] (\sqrt{I_{+}I_{-}})$ Beam dose [Ah] *[I_{b+}xI_b[*mA²] BG from storage beam 1.40 2000 1.2E-07 12 1800 ~1.8 kAh Belle HV on 1.20 1.0F-07 10 1600 1.00 1400 (Result in ~0.8A 8.0E-08 8 1200 0.80 2019b) ----1000 6.0E-08 6 0.60 800 4 4.0E-08 600 0.40 400 (Result in 2.0E-08 2 0.20 Belle HV on 200 Lsp ave (>70%) 2019c 0.0E+00 0.00 0.6 2019/10/1 2019/12/16 2020/3/1 2019/10/1 2019/12/16 2020/3/1 2020/5/16 2020/ 2019/10/1 2019/12/16 2020/3/1 2020/5/16 2020 0 0.2 0.4 2020/5/16 2020/ Ib+*Ib- [mA^2] • P[Pa]xI[A] (p) at $\beta_v^*=1$ mm $L_{\rm p}$ [x10³⁴ cm⁻²s⁻¹] Int. L [fb⁻¹] β_{μ}^{*} [mm] B-B param. (HER) 0.04 2.5 5 200 2 4 ~0.02 0.03 150 3 1.5 ~100 fb⁻¹ 2.2E34cm⁻²s⁻¹ 0.02 100 2 1 0.01 1mm 50 (Result in 0.5 1 2019b)

2019/10/1

2019/12/16

2020/3/1

Int Lx0.7 [fb-1](p) ____ Int L [fb-1](r)

2020

2019/12/16

2020/3/1

L [E34](p) ___ L[E34](r) peak

2020/5/16

2020,

2019/10/1

2020/3/1 2020/5/16

2019/10/1 2019/12/16

0.8

bb-e (>70%)

0.6

lb+ [mA]

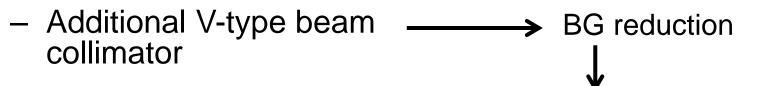
0

2020/

2020/5/16

0.2

0.4

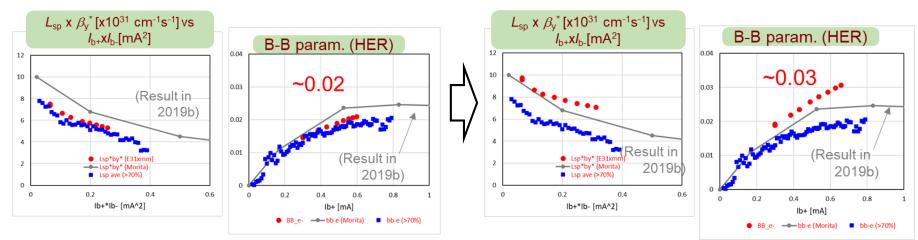

- 1. Near term-1 (~2020/June)
- Hardware improvements during winter shutdown
 and their expected effects

Additional V-type beam → BG reduction collimator

Increase in beam currents

- 1. Near term-1 (~2020/June)
- Hardware improvements during winter shutdown
 and their expected effects
 - Additional V-type beam _____ BG reduction collimator
 - Replacement and activation _____ Increase in of RF-gun cathode _____ beam currents
 - Establishment of 2-bunch injections

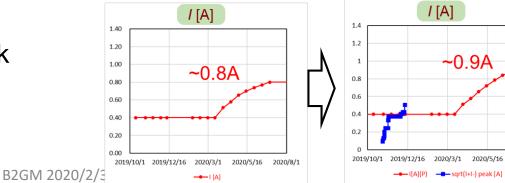
- 1. Near term-1 (~2020/June)
- Hardware improvements during winter shutdown
 and their expected effects


- Replacement and activation _____ Increase in of RF-gun cathode _____ beam currents
- Establishment of 2-bunch ______
 Beam-beam parameter
- Preparation of Crab waist → improvement scheme
 Beam Tail ↓, BG ↓, Currents ↑, → Lumi. ↑)
- Improvements in BG, optics and beam dynamics issues are also expected by machine studies during beam operation.

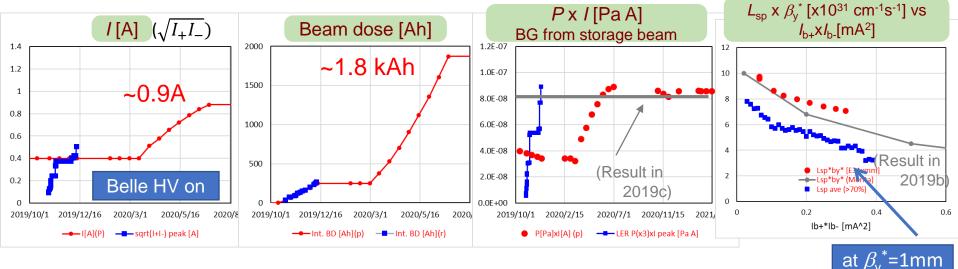
Super

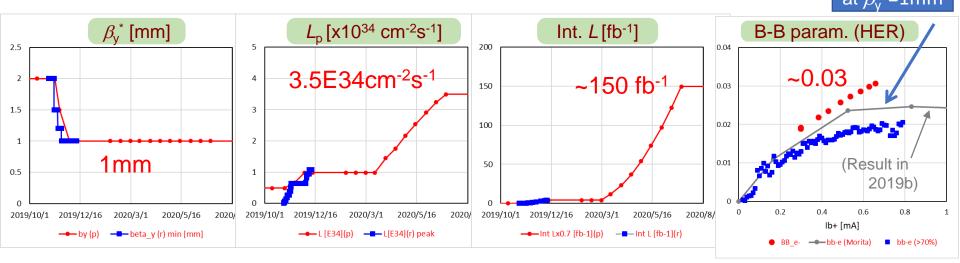
- 1. Near term-1 (~2020/June)
- (2) Possible (expected) plan

Assumptions:


- 1) 2020a run starts from 2020/3/2.
 - LER starts 2020/2/25 for vac. scrubbing and tuning.
- 2) 2020a and b runs are basically dedicated to physics run. (100 days for physics run)
- 3) β_v^* is kept at 1 mm.
- 4) BG from injection beams is improved. (stable injection, low emittance)
- 5) Similar beam-beam effect as 2019c, but still expecting some improvement by 30~50%.

- 1. Near term-1 (~2020/June)
- (2) Possible (expected) plan


Assumptions:


- 1) 2020a run starts from 2020/3/2.
 - LER starts 2020/2/25 for vac. scrubbing and tuning.
- 2) 2020a and b runs are basically dedicated to physics run. (100 days for physics run)
- 3) β_v^* is kept at 1 mm.
- 4) BG from injection beams is improved. (stable injection, low emittance)
- 5) Similar beam-beam effect as 2019c, but still expecting some improvement by 30~50%.
- 6) Similar background level (storage beam) as 2019c.
- 7) Expecting vacuum scrubbing of LER(Decrease in dP/dI is proportional to 1/BD). → Further increase in beam currents.
- 8) Efficiency of integrated luminosity is 70% of peak luminosity.
- 9) 1576 bunches

Super KEKR

2020/8/1

Interim summary

	Until 2020/7/1					
	Int. <i>L</i> [fb ⁻¹]	L _p [E34]	I _{max} [A]	β_{y}^{*} [mm]		
Base (conservative) plan	100	2.2	0.8	1		
Possible (expected) plan	150	3.5	0.9	1		

1. Near term-2 (~2021/March=FY2020)

Operation plan

FY2020 Budget for SuperKEKB project

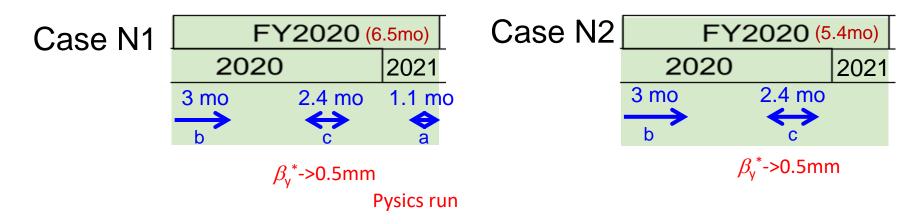
As reported by Ushiroda-san

- Assuming the average unit cost of electricity to be kept, we can operate for 5.4 months with FY2020 project budget alone.
- We aim to add 1.1 months (= 6.5 months in total) (cost cut here and there, hope for world peace and stable electricity cost, and extra budget from DG).
- Here we considered two cases;
 - (1) Case N1: 6.5 months operation in FY2020
 - (2) Case N2: 5.4 months operation in FY2020

Super KEKR

4/1~7/1 (3 mo), 10/13~12/25 (~2.4 mo), 2/22~3/31 (~1.1 mo)

5.4 months operation. 4/4 7/4 (2 mo) 40/42 42/2


4/1~7/1 (3 mo), 10/13~12/25 (~2.4 mo)

1. Near term-2 (~2021/March=FY2020)

Assumptions:

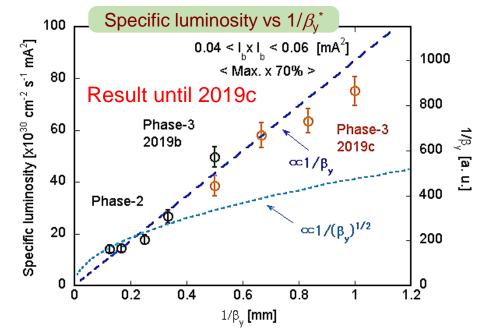
1) 6.5 months operation. $4/1 \sim 7/1$ (3 mo), 10/13 \sim 12/25 (\sim 2.4 mo), 2/22 \sim 3/31 (\sim 1.1 mo) 5,4 months operation. $4/1 \sim 7/1$ (3 mo), 10/13 \sim 12/25 (\sim 2.4 mo) 2) 2020c is dedicated to squeeze β_y^* . (as in the case of 2019c) $\beta_y^* = 1.0 \text{ mm} \rightarrow 0.7 \text{ mm} \rightarrow 0.5 \text{ mm}$ in 1 month 2021a is dedicated to physics run (Case N1)

1. Near term-2 (~2021/March=FY2020)

Assumptions:

1) 6.5 months operation.

4/1~7/1 (3 mo), 10/13~12/25 (~2.4 mo), 2/22~3/31 (~1.1 mo) 5,4 months operation.


4/1~7/1 (3 mo), 10/13~12/25 (~2.4 mo)

2) 2020c is dedicated to squeeze β_v^* . (as in the case of 2019c)

 $\beta_v^* = 1.0 \text{ mm} \rightarrow 0.7 \text{ mm} \rightarrow 0.5 \text{ mm}$ in 1 month

2021a is dedicated to physics run (Case N1)

3) Specific luminosity at low bunch currents is proportional to 1/ β_v^* .

1. Near term-2 (~2021/March=FY2020)

Assumptions:

1) 6.5 months operation. 4/1~7/1 (3 mo), 10/13~12/25 (~2.4 mo), 2/22~3/31 (~1.1 mo) 5,4 months operation. 4/1. 7/1 (3 mo), 10/13, 12/25 (. 2.4 mo)

4/1~7/1 (3 mo), 10/13~12/25 (~2.4 mo)

- 2) 2020c is dedicated to squeeze β_v^* . (as in the case of 2019c)
 - $\beta_{v}^{*} = 1.0 \text{ mm} \rightarrow 0.7 \text{ mm} \rightarrow 0.5^{\prime} \text{ mm}$ in 1 month
 - 2021a is dedicated to physics run (Case N1)
- 3) Specific luminosity at low bunch currents is proportional to $1/\beta_v^*$.
- 4) Beam background is independent of β_y^* .

Also a key point in the future commissioning!

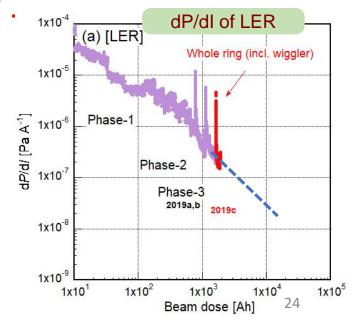
1. Near term-2 (~2021/March=FY2020)

Assumptions:

1) 6.5 months operation.

4/1~7/1 (3 mo), 10/13~12/25 (~2.4 mo), 2/22~3/31 (~1.1 mo)

5,4 months operation.

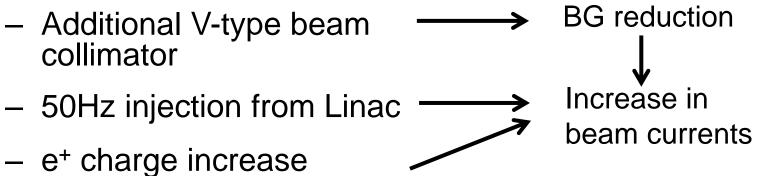

4/1~7/1 (3 mo), 10/13~12/25 (~2.4 mo)

- 2) 2020c is dedicated to squeeze β_y^* . (as in the case of 2019c)
 - $\beta_{y}^{*} = 1.0 \text{ mm} \rightarrow 0.7 \text{ mm} \rightarrow 0.5 \text{ mm}$ in 1 month

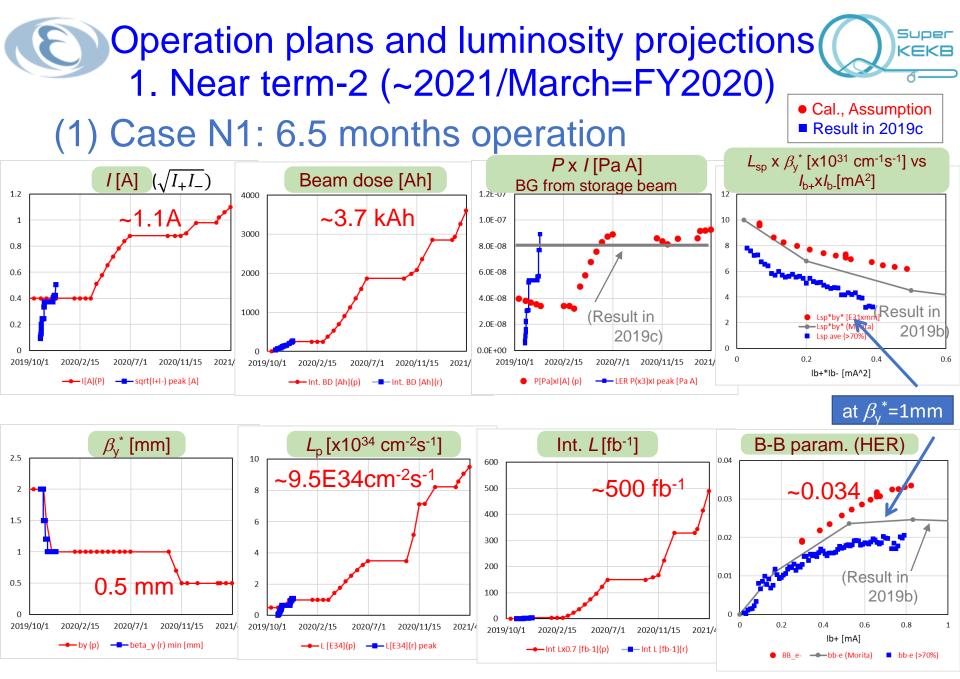
2021a is dedicated to physics run (Case N1)

- 3) Specific luminosity at low bunch currents is proportional to 1/ β_y^* .
- 4) Beam background is independent of β_{y}^{*} .
- 5) Expecting steady vacuum scrubbing of LER.
- 6) Efficiency of integrated luminosity is 70% of peak luminosity.

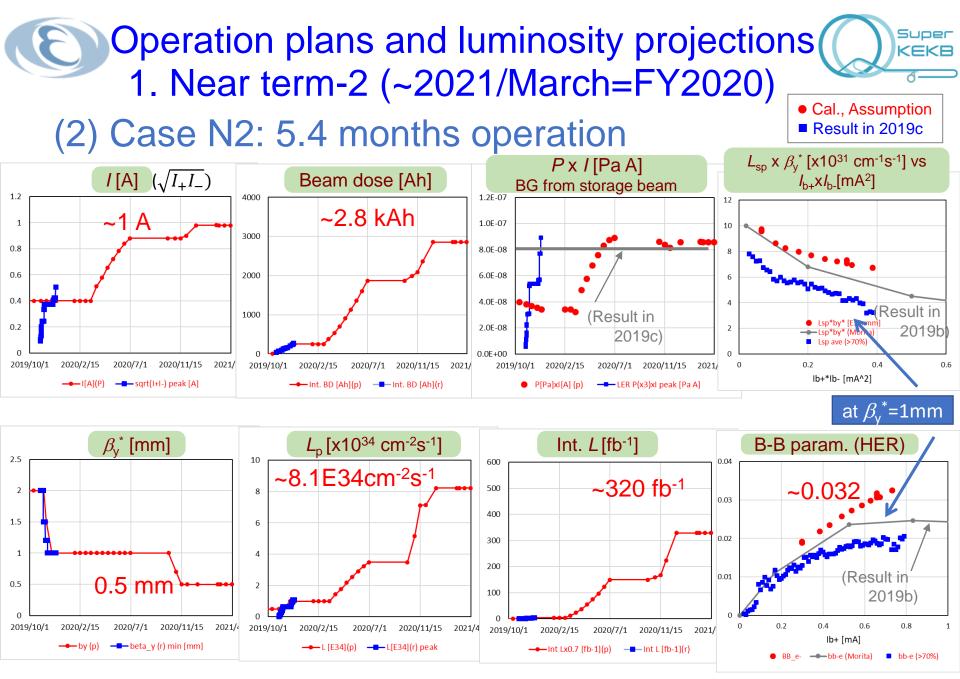
7) 1576 bunches



- Hardware improvements during 2020 summer shutdown and their possible effects

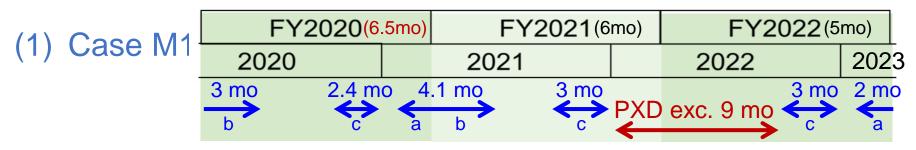

beam currents

Operation plans and luminosity projections 1. Near term-2 (~2021/March=FY2020)

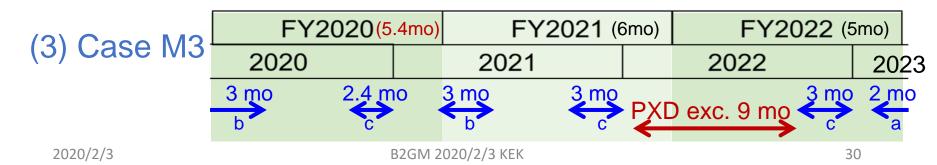

Hardware improvements during 2020 summer shutdown and their possible effects

- e⁺ charge increase (FC power up)
- Improvements in BG, optics and beam dynamics issues are also expected by machine studies during beam operation.

2020/2/3

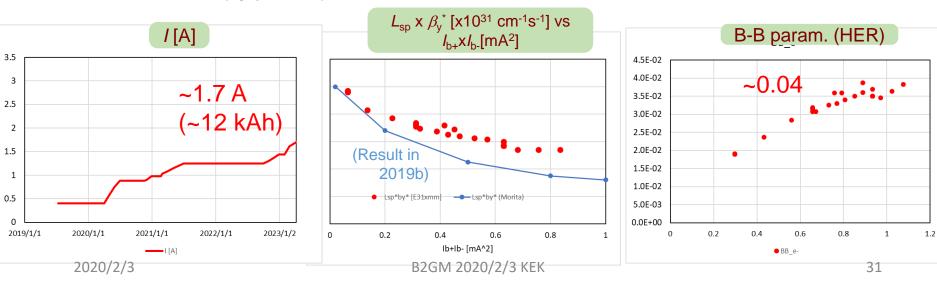

2020/2/3

Interim summary

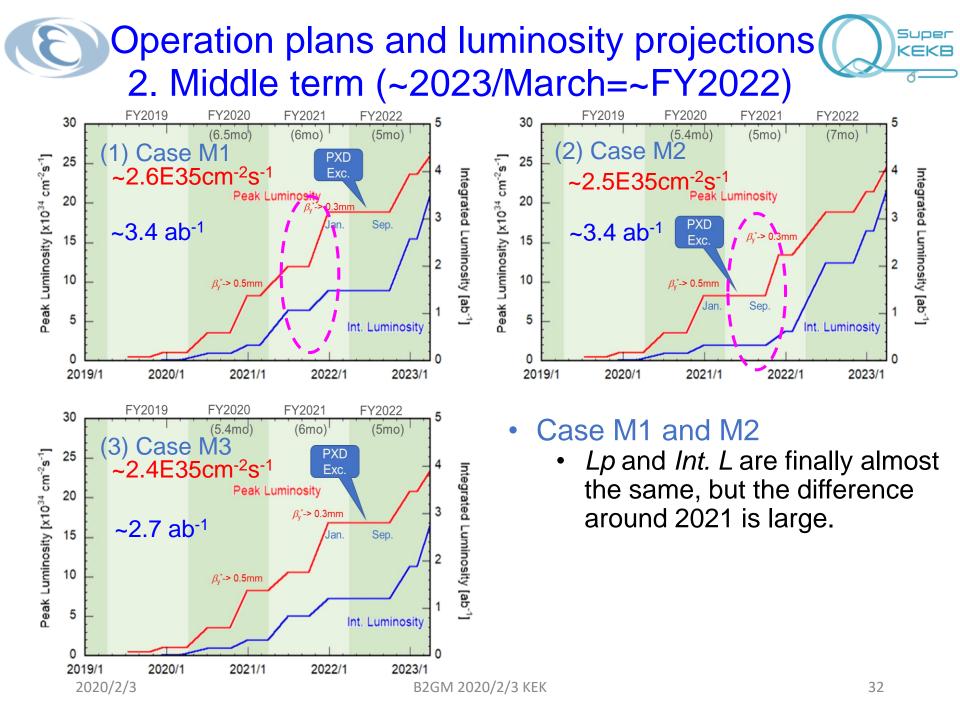

	Until 2020/7/1				Until 2021/3/31			
	Int. <i>L</i> [fb ⁻¹]	L _p [E34]	I _{max} [A]	eta_{y}^{\star} [mm]	Int. <i>L</i> [fb ⁻¹]	L _p [E34]	I _{max} [A]	eta_{y}^{*} [mm]
Base (conservative) plan	100	2.2	0.8	1				
Possible (expected) plan	150	3.5	0.9	1				
Case N1: 6.5 months operation	150	3.5	0.9	1	500	9.5	1.1	0.5
Case N2: 5.4 months operation	150	3.5	0.9	1	320	8.1	1	0.5

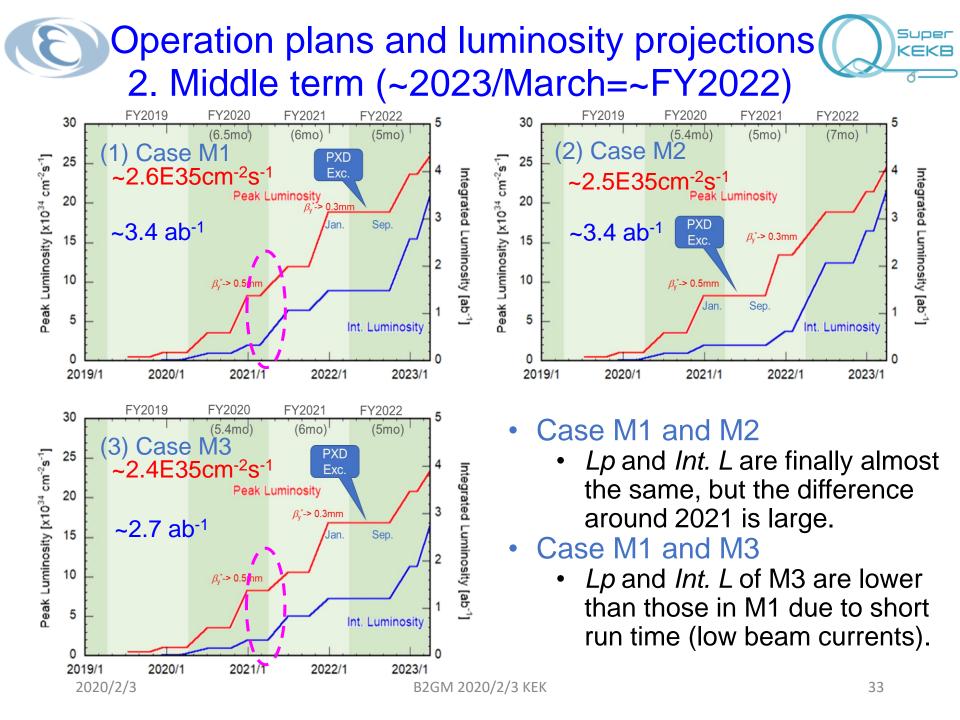
Operation plans

Here we considered three cases:


Operation plans and luminosity projections(2. Middle term (~2023/March=~FY2022)

Assumptions:


- 1) We basically aim 7 months operation/year (~2022).
 - (more operation budget and further cost down!)
- 2) 2021c is dedicated to squeeze β_v^* . (as in the case of 2020c)
- $\beta_y^* = 0.5 \text{ mm} \rightarrow 0.4 \text{ mm} \rightarrow 0.3 \text{ mm}$ (Still Specific Lumi. $\propto 1/\beta_y^*$) 3) Bunch number is increased to from 1576 to 2500 from 2023a.


Super KEKB

- 4) Further improvement in BG, beam-beam effect and so on.
- 5) Other assumptions are the same as before.

For Case 1 (typical)

Operation plans and luminosity projections 2. Middle term (~2023/March=~FY2022)

Interim summary

	Until 2022/3/1				Until 2023/3/31			
	Int. <i>L</i> [ab ⁻¹]	L _p [E34]	I _{max} [A]	eta_{y}^{*} [mm]	Int. <i>L</i> [ab ⁻¹]	L _p [E34]	I _{max} [A]	${eta_{y}^{*}}$ [mm]
Case M1: FY2020 6.5 months PXD exc. 2022	1.5	19	1.3	0.3	3.4	26	1.7	0.3
Case M2: FY2020 5.4 months PXD exc. 2021	0.6	16	1.1	0.3	3.4	25	1.6	0.3
Case M3: FY2020 5.4 months PXD exc. 2022	1.2	17	1.2	0.3	2.7	24	1.6	0.3

- Operation plans and luminosity projections were reevaluated based on the recent results
 - Near term plans
 - ~100 fb⁻¹(conservative) ~ ~150 fb⁻¹ (expected) by 2020/June ~500 fb⁻¹(6.5 mo.) ~ ~320 fb⁻¹ (5.4 mo.) by 2021/March (expected)
 - Middle term plan
 - ~2.7 ~ ~3.4 ab^{-1} by 2023/March (expected)
 - Depend on the operation plan.
 - Long term plan (~2029) Under consideration
- It might be nothing to say that these luminosity projections include lots of (expected) assumptions.
- We are now struggling to solve various challenges step by step and to provide higher luminosities.
- Now we have to recognize again that securing sufficient operation time is an essential issue as a factory machine.
- We greatly appreciate your continued support. 2020/2/3 KEK

Thank you for your attention.