

Injector linac status and energy margin

Kazuro Furukawa

for Injector Linac Groups

<http://www-linac.kek.jp/linac/> < kazuro.furukawa @ kek.jp >

24th KEKB accelerator review

¤ Remotely on July 15th and 20th

General recommendations on injector

Pursue aggressive linac/injector improvements ...

Injector recommendations

Improvements in

- **¤** Positron capturing section, positron yield
- **Photocathode for RF gun, electron bunch charge**
- **¤BT2** for obstacles, beam instrumentations, beam optics

Mostly in line with planned improvements during summer

MEXT roadmap and injector

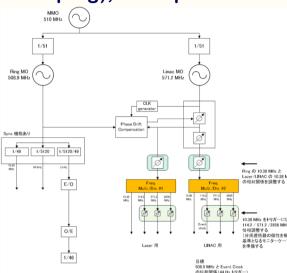
MEXT Roadmap 2020

HER 2.6 A x LER 3.6 A (original plan before 2020)

 4 nC/bunch, 2 bunch/pulse, 50 Hz, 50% efficiency could have supported 6 minute lifetime in HER/LER

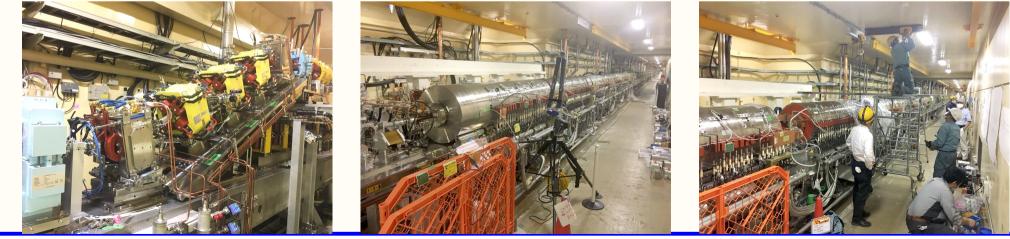
↔ → HER 2.0 A x LER 2.8 A

The same condition supports lifetime down to 240 secondsalthough beam quality has to be maintained

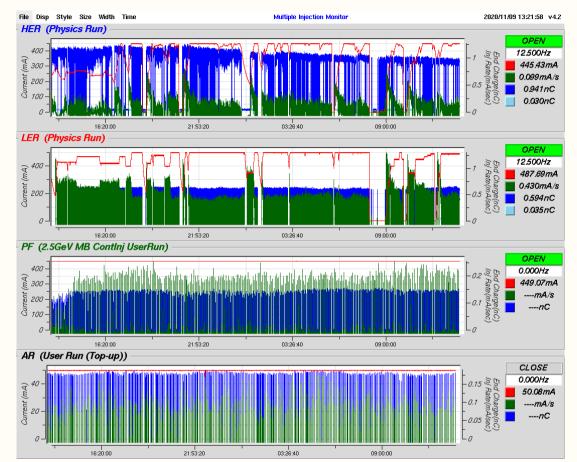


Improvements during summer shutdown

- Replacement of thermionic gun cathode
- Replacement of RF gun cathode (Ir7Ce2), removing heating system
- Installation of diffractive optical element (DOE, laser profile shaping), Laser position stabilization feedback
- Upgrade of event timing controls for continuous laser cleaning
- Preparation for secondary RF gun
- Replacement of high power klystron (KL_B4)
- Replacement of klystron solenoid power supply (2)
- Replacement of thyratron (KL_A1_B, A2, 15, 16, 17, DS, DN)
- Installation of noise elimination measure (all 60 units)
- Replacement of inverter power supply (KL_17, DS)
- Improvement to master oscillator with more detectors and phase shifters
- Replacement of driver klystron with solid-state amplifier (SB_B)
- Installation of independent amplifier (KL_C8)
- Pulse-to-pulse amplitude controls at SHB
- Replacement of flux-concentrator and nominal operational field (12 kA)
- Installation of 4 pulsed steering magnets and 4 bpms inside of positron capturing section
- Replacement of charging circuit for all pulsed magnet power supplies
- Replacement of old cables for high power magnet power supplies
- Upgrade merger beamline after two guns with 2 pulsed bends, 3 quads, 2 bpms and a new chamber



- Installation of diffractive optical element (DOE, laser profile shaping), laser position stabilization feedback, and cathode
- Improvement to master oscillator with more detectors and phase shifters



- Upgrade merger beamline after two guns with 2 pulsed bends, 3 quads, 2 bpms and a new chamber
- Installation of 4 pulsed steering magnets and 4 bpms inside of positron capturing section
- Replacement of flux-concentrator and nominal operational field (12 kA)

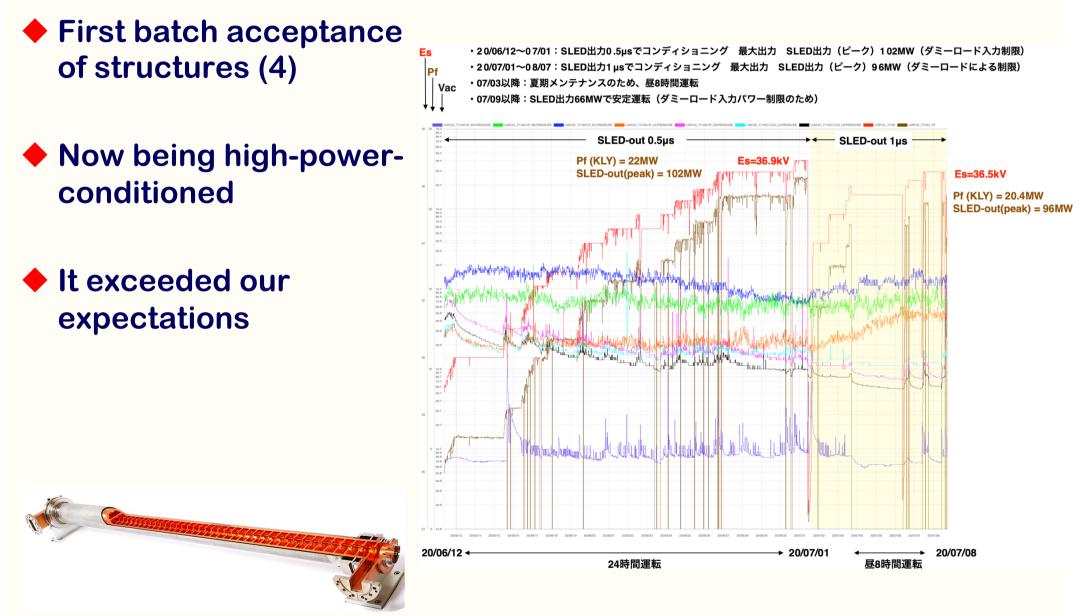
Injector linac operation

- machine study time this season up to now was devoted to bt beam study and radiation safety
- Iimited chance to condition and to tune injector beams for 3 weeks
- needs at least half shift per week for rf gun
- more quantitative procedure to stabilize injection beams

Super

Higher energy injection and collision

Mitigation of accelerator structure failures


- Originally designed for 8 MeV/m, but used at 20 MeV/m
- Degradation that lead to high field emission rate and discharges
- Water leaks
- Not only Y(6S) but even Y(4S) could be suffered

4-year plan to fabricate and install new accelerator structures

FY 2018	FY 2019	FY 2020	FY 2021	FY 2022								
New S-band structure												
Completed ! R & D Fabrica	Completed ! ation of four structures	High-power test & installation										
		Material procurement for 12 structures	Fabrication of	f 12 structures Conditioning Installation								
RF source addition												
			Device procurement	Installation								
Pulse compressor												
		R & D prototype high-power te	Fabrication	Installation								

Accelerator structures

Energy

Recent effort to optimize parameters

10.753 + 0.023/2 GeV could be possible with backups

- ¤ e+ : 4.071 GeV, e- : 7.124 GeV
- ば with 2 nC/bunch

After structure upgrade in 2023 winter

- - ¤ e+ : 4.165 GeV, e- : 7.289 GeV
 - ば with 2-3 nC/bunch

🔶 BT limit

¤ e+ : 4.290 GeV, e- : 8.465 GeV (both coil heating limit)

♦ MR

No discussion yet, while included in the design

- Easier with Belle II solenoid scaled
- Otherwise, …

Thanks

Linac Beam Property Requirements Super

Linac Beam Parameters for KEKB/SuperKEKB

Stage	KEKB (final)		Phase-I (achieved)		Phase-II (achieved)		Phase-III (interim)		Phase-III (final)	
Beam	e+	e-	e+	e-	e+	e-	e+	e-	e+	e-
Energy	3.5 GeV	8.0 GeV	4.0 GeV	7.0 GeV	4.0 GeV	7.0 GeV	4.0 GeV	7.0 GeV	4.0 GeV	7.0 GeV
Stored current	1.6 A	1.1 A	1.0 A	1.0 A	-	-	1.8 A	1.3 A	3.6 A	2.6 A
Life time (min.)	150	200	100	100	-	-	-	-	6	6
	primary e- 10		primary e- 8						primary e- 10	
Bunch charge (nC)	→ 1	1	→ 0.4	1	0.5	1	2	2	→ 4	4
Norm. Emittance	1400	310	1000	130	200/40	150	150/30	100/40	<u>100/15</u>	<u>40/20</u>
$(\gamma\beta\epsilon)$ (mrad)					(Hor./Ver.)		(Hor./Ver.)	(Hor./Ver.)	(Hor./Ver.)	(Hor./Ver.)
Energy spread	0.13%	0.13%	0.50%	0.50%	0.16%	0.10%	0.16%	0.10%	<u>0.16%</u>	<u>0.07%</u>
Bunch / Pulse	2	2	2	2	2	2	2	2	2	2
Repetition rate	50 Hz		25 Hz		25 Hz		50 Hz		50 Hz	
Simultaneou s top-up injection (PPM)	3 rings (LER, HER, PF)		No top-up		Partially		4+1 rings (LER, HER, DR, PF, PF-AR)		4+1 rings (LER, HER, DR, PF, PF-AR)	

Final parameters will be updated