

LINAC Upgrade Status

Takako Miura / Kazuro Furukawa (Accelerator Laboratory, KEK) on behalf of Injector LINAC group

Injector LINAC

High-current and **low-emittance** injection beams are required for SuperKEKB. The LINAC has been upgraded for SuperKEKB, and beam commissioning has been performed during the upgrading.

	for KE	KB	for SuperKEKB			
	e+	e-	e+	e-		
Energy	3.5 GeV	8.0 GeV	4.0 GeV	7.0 GeV		
Bunch charge	Primary e-10nC →1 nC	e-10nC Primary nC 1 nC $\rightarrow 4$		5 nC		
Norm.Emittance ($\gamma\beta\epsilon$)	2100 (mm⋅mrad)	100 (mm⋅mrad)	100/ <mark>20</mark> (Hor./Ver.) (mm⋅mrad)	50/ <mark>20</mark> (Hor./Ver.) (mm⋅mrad)		
Energy spread	0.125%	0.125%	0.1%	0.1%		
Num. of Bunch / Pulse	2	2	2	2		
Repetition rate	50 H	lz	50 Hz			
Simultaneous top-up injection	3 rinę /KEKB e-/	gs /e+, PF)	4 rings (SuperKEKB e-/e+, PF, PF-AR)			

LINAC Beam Parameters

Schedule

SuperKEKB commissioning is divided into three stages. (phase1, phase2, phase3)

Calendar	20	15		2016		016	2017			2018					
		Power res	striction er			Power restriction in summer			Power r in sum	estriction mer			Power r in sum	estriction mer	
Current pla	an on (going	1	Phase w/o Q0 w/o Be	e 1 CS C	QCS, Belle II ins	tall	P w/ w/	hase 2 QCS Belle II (no VXD)	VXD i	nstall	-	Phase w/ full B	e 3 elle II
Va Bas		cuum Se ic mach <i>Curren</i>	crubbii ine tur it=1A	obing tuning A Injection Beam		L= (KI	$L = 1 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ (KEKB design)		Add more RF L=		= 8×10 ³⁵ Full Cur	cm ⁻² s ⁻¹			
		1 nC/b w/o D	ounch DR	DR commissionin		1	low emittance 2 nC/bunch w/ DR				low emi 4~5 nC, w/	ttance /bunch DR			
				no Top	-up inj			То	p-up inje	ection				Top-up ir	njection

Major Upgrades of Injector LINAC

Layout of Electron Guns

- Thermionic electron gun are located upstairs to produce <u>~10 nC primary</u> electrons for positron production.
- Photocathode RF gun for low emittance e- production is located on the straight line.

Photocathode RF gun

Thermionic gun: commissioning was started from June 2015.

Quasi Traveling Wave Side Couple RF GUN

Strong focusing force using accelerating field

=> Strong focus

Quasi traveling wave (QTW) side couple RF gun

QE=1 × 10⁻⁴ @266nm Long lifetime

Incident angle: 60deg to the cathode surface.

QTW is made by two standing waves with 90deg phase difference.

QTW type is adopted to make drift space short. Drift space = no focus field

7 cell, 13.5 MeV@design Emittance: 5.5 mm-mrad @5 nC (by simulation) This RF gun can generate e- up to 10 nC

coupling cavities

T.Natsui, M.Yoshida

Yb:YAG/Nd:YAG Laser System for RF-Gun

Yb:YAG (1025-1070 nm) broad band \rightarrow Pulse shape manipulation is possible.

B2GM 26-Jun-2015 T. Miura

Beam Commissioning of RF Gun

Beam Commissioning of Thermionic e- Gun

Positron Capture Section

Positron beam commissioning @June 2014

e+ yield (Ye+) = e+ charge (Qe+) / primary e- charge (Qe-)

Ye+@Jun.2014 = 30 % at capture section end, 20% at the end of Sector2 with limited ele/mag fields

Radiation shield for higher beam current

Gradual increase of beam current / shield and corresponding radiation license applications are planned

Summary

- Steady progress towards first MR injection in JFY2015
- Finished earthquake disaster recovery in JFY2014
- Will make gradual improvements up to Phase-III
 - Alignment: almost confident on the required precision (0.1mm local, 0.3-mm global), need to maintain for longer term
 - RF gun: following recommendations at review meetings with commercial devices and Nd-based lasers
 - Thermionic gun: under commissioning
 - Positron generator: waiting for license tests
- Will balance between final beam quality and operation in phases
- Will select optimized route depending on available resources

Back-up slides

Why need longitudinal pulse-shape manipulation?

Alignment Requirement

 σ < 0.1 mm: βγε 20 mm·mrad is almost satisfied.

 $\sigma > 0.1$ mm: emittance preservation is required by some methods.

<u>Requirement</u>

Local $\sigma < 0.1$ mm Global $\sigma < 0.3$ mm

Hard ware alignment on a girders in sector 3 - 5

May/5/2015

IPAC2015 Takako Miura

Floor Movement in a Half Year

straight laser of 500m + Position Detector (PD)

T. Suwada

FIG. 5. Intensity profiles of the laser beam at (a) z = 0 m and (b) z = 500 m. Scale bars are 5 mm

4-segmented silicon PD (dia.=10mm) At expansion joint in tunnel, large movement is observed.

T. Higo

Expected e+ Yield improvement

LINAC Beam Acceleration Scheme

Injector LINAC

The upgrade construction toward SuperKEKB has been started from 2010. High-current and low-emittance injection beams are required for SuperKEKB. Upgrade of injector LINAC for SuperKEKB is in progress.

LINAC is the injector for four storage rings (LER, HER, PF, and PF-AR). The pulse by pulse beam mode switching in 50 Hz which is repetition rate of the LINAC is necessary for top-up injections into these four rings.

Beam Lifetime

	Y. Funakoshi								
	KEKB (design)	KEKB (op	peration)	SuperKEKB Design				
	LER	HER	LER	HER	LER	HER			
Radiative Bhabha	21.3h	9.0h	6.6h	4.5h	28min.	20min.			
Beam-gas	45h ^{a)}	45h ^{a)}			24.5min. ^{b)}	46min. ^{b)}			
Touschek	10h	-			10min.	10min.			
Total	5.9h	7.4h	~2.2h	~3.3h	6min. ^{c)}	6min. ^{c)}			
Beam current	2.6A	1.1A	1.6A	1.1A	3.6A	2.6A			
Loss Rate	0.12mA/s	0.04mA/s	0.23mA/s	0.11mA/s	10mA/s	7.2mA/s			

a) Bremsstrahlung

- b) Coulomb scattering, sensitive to collimator setting
- c) w/o beam-beam effect

Low emittance and high current injection beams are necessary.

LINAC is a key component of SuperKEKB.

Revolution freq~100kHz

For compensation of the particle loss 4nC@25Hz 2.9nC@25Hz injection rate are required.

LINAC Beam Parameters

	for KE	EKB	for SuperKEKB			
	e+ e-		e+	e-		
Energy	3.5 GeV	8.0 GeV	4.0 GeV	7.0 GeV		
Bunch charge	Primary e-10nC →1 nC	1 nC	Primary e-10nC → <mark>4 nC</mark>	5 nC		
Num. of Bunch / Pulse	2	2	2	2		
Norm.Emittance ($\gamma\beta\epsilon$)	2100 (mm⋅mrad)	100 (mm⋅mrad)	100/ <mark>20</mark> (Hor./Ver.) (mm⋅mrad)	50/ <mark>20</mark> (Hor./Ver.) (mm⋅mrad)		
Energy spread	0.125%	0.125%	0.1%	0.1%		
Repetition rate	50 H	lz	50 Hz			

Beam modes are switched in pulse to pulse for 5-rings including Damping Ring (DR).

High charge and low emittance are required for SuperKEKB

	for K	EKB	for SuperKEKB			
	e+	e-	e+	e-		
Energy (GeV)	3.5	8.0	4.0	7.0		
Bunch charge (nC)	1	1	4	5		
Norm.Emittance (γβε) (mm⋅mrad)	2100	100	100 (н) / 20 (∨)	50 (н) / 20 (V)		
Energy spread (%)	0.125	0.125	0.1	0.1		