Pulse Bend 電磁石電源

11月25日

仕樣

- (1)出力電流波形 パルス幅 200 µ 秒程度
- (2)出力最大電流 | max=32kA
- (3)出力尖頭電流安定度
 - peak-to-peak で出力尖頭電流0.1%よりよい。
 - (4)で上げる最大繰り返し以下で、繰り返し周波数が不連続的に変化しても尖頭電流安定度は、仕様を満たすこと。
- (4)最大繰り返し 25Hz(電流27kA未満)
 - 電流が27kA以上の場合は、パルス出力の電力が25Hz27kA時以下の範囲で繰り返し周波数を決定できる。
- ■(5)最大充電電圧 5kV程度

電源内部の検討

- スイッチング 当初考えていたサイリスタは、 ドリフト(3μsec程度)が大きいため、別な GTOを使用する。
- 充電コンデンサー 6回路
- リアクトル部分:発熱3kW 空冷+水冷

周りとの取り合い

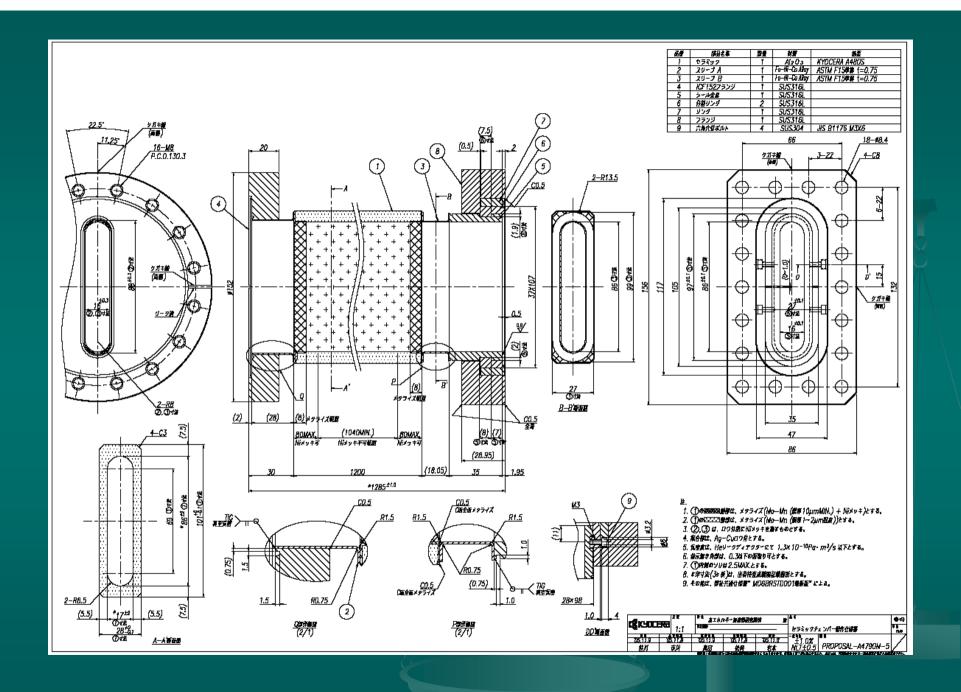
- 設置場所
 - Linac クライストロンギャラリー
- ケーブル
 - 出力ケーブル 最大40本同軸ケーブル(新しい穴)
- 冷却水と空調
 - 20リットル/分
 - 水冷と空冷の両方(風で吹いて、その風を水で冷やす)
- アース
 - 来年度、夏までに敷設予定

周りとの取り合い2

- ■制御
 - トリガー 光トリガーを予定
 - 横河のシーケンサー(イサネット)
- インターロック
 - 電源内部で閉じる部分は、normal close
 - 外部インターロックのレベルは1つ
 - ■電磁石関係
 - 温度異常 Normal close
 - 冷却水 Normal close
 - インターロック出力
 - 準備完了時にopen
 - 高電圧がかかっている時 open
 - パトライト(電磁石、電源本体)

導入スケジュール

- 3月末までに納入
- ■加速器南実験室で試験、磁場測定
- 来年度夏に搬入据え付け


Pulse Bend セラミックチェンバー

- ■製作会社:京セラ
- セラミックの長さ 1200 mm
- ■下流から挿入
 - 下流:ICF152フランジ
 - 上流:特殊フランジ

Madalliand Di

