EVR Usage Guide

Michael Davidsaver <mdavidsaver@gmail.com >

August. 2015, Rev. 7

Contents

1 System Overview
1.1 Event Link Data
1.2 Global Time Distribution

2 Receiver Functions
2.1 Pulse Generators
2.2 Event Mapping Ram
2.3 Prescalers (Clock Divider)
2.4 Outputs (TTL) o o e
2.5 Outputs (CML and GTX)
2.6 Inputs
2.7 Global Timestamp Reception
2.8 DataBuffer Tx/Rx

3 What is Available?
3.1 Prerequisites

3.2 SOUICE . . . v v i e

4 Supported Hardware

I0C Deployment

5.1 Devicenames e
5.2 VMEG64x Device Configuration
5.3 PCI Device Configuration
54 PCI Setupin Linux
5.5 Example Databases

Testing Procedures
6.1 EVG and EVR Checkout
6.2 Timestamp Test Lo

Firmware Update

71 VMEEVRsand EVGs
7.2 cPCI-EVRTG-300
7.3 PMC-EVR-230

NTPD Time Source

Implementation Details
9.1 Event code FIFO Buffer
9.2 Data Buffer reception

9.3 Timestamp validation

10 EVR Device Support Reference

10.1 Global o
10.2 SFP
10.3 Pulse Generator. Lo
10.4 Prescaler (Clock Divider)
10.5 Output (TTL and CML)
10.6 Output (CML/GTX only)
10.7 Input L o
10.8 Event Mapping L
10.9 Database Events oo
10.10Data Buffer Rxo
10.11Data Buffer Tx oo

14
15
17

18
18
18
18

22

23
23
24
24

1 System Overview

The purpose of this document is to act as a guide and reference when using the
'mrfioc2” EPICS support module for the Micro Research Finland (MRF) timing
system®. It describes software for using the Event Generator (EVG) and Event
Receiver (EVR).

The MRF Event Timing System can be deployed in two configurations (Fig. 1).
The first is a unidirectional broadcast from a single source (EVG) to multiple
destinations (EVRs). The Repeater devices simply retransmit its single input
to all outputs (one to many). In the second configuration a return path from
many EVRs back up to single central (master) EVR is added.

An EVR will act in one of two roles: either Leaf or Master. The Master EVR is
necessary because, while the generator (EVG) is capable of receiving an event
stream, it does not impliment the features of the receiver (EVR).

EVG

Repeater Concentrator
Repeater Repeater Concentrator | | Concentrator

AN ALY
[EVR]

[EVRl [EVRl [EVR] [EVR] [EVR]

Configuration 1 Configuration 2

Figure 1: Two system configurations for the MRF Timing System

What is transmitted over the event link is a combination of 8-bit event codes
and data. Data can take the form of a single 8-bit byte which is simply copied
from sender to receiver (the Distributed Bus or DBus), and optionally a variable
length byte array (Data Buffer).

These two types of data can be combined in two ways (Fig. 2) depending on
whether or not the Data Buffer feature is used. In configuration A every 16-
bit frame is split between an 8-bit event and the 8-bit Distributed Bus. In
configuration B every frame carries an 8-bit event with the Distributed Bus or
a Data Buffer byte sent in alternating frames.

In addition to data, the use of 8b10b encoding on the event link allows the local
oscillator of each EVR to be phase locked to a reference sent by the EVG. The
EVG itself is typically driven from an external oscillator.

When discussing the MRF timing system there are three clocks. The external
reference clock for the EVG, the bit clock for transceivers, and the Event Clock.
The relation between the reference and the Event clocks is determined by a

IList of supported hardware given in section 4.

8bits 8bits | B-bits 8-bits
Frame N [Event#[DBus | | [Event#| DBus |

Frame N+1 [Event#[DBus | [Event#[Data Buf|

Figure 2: Two supported link allocation schemes

programmable divider in the EVG and is usually a small integer number (eg.
4). The Event clock must be in the range between 50MHz and 125MHz. The
relation between the Event clock and the bit clock is a fixed factor of 20 which
is determined by the frame size described above.

Fbit/20 - FEvent - FEzt/NDivide

1.1 Event Link Data

Data which is transferred over the event link is interpreted in four ways: Event
Codes, DBus bits, Data Buffers, and Clock Phase. Each carries a different
meaning, and is used in different ways.

1.1.1 Event Codes

An event is momentary. Typically an event causes something to happen (a
trigger). The 255 usable event codes available in the MRF system can be thought
of as 255 seperate physical wires. On every tick of the Event Clock a pulse is
sent on one (and only one) of the “wires”. Zero is the “idle” event which is sent
when no other event is queued.

Event Codes will most often be used as triggers for external delay channels.
However, there are a number of event codes which have special meaning in the
MRF system. The meaning of all other codes is left to the system operator.

| Code | Meaning |
0x00 Idle, or null, event. Send when nothing happens.
0x70 Shift 0 into EVR timestamp shift register
0x71 Shift 1 into EVR timestamp shift register
0x7A Reset EVR heartbeat timeout counter
0x7B Reset all EVR dividers. Synchronize global phase
0x7C Increment EVR timestamp counter (depending on mode)
0x7D Reset timestamp counter
0x7F | End of sequence (not transmitted). Use in other contexts is discouraged.

Table 1: Special Event codes

1.1.2 Distributed Bus (DBus) bits

The Distributed Bus (DBus) consists of 8 bits of data which are stored on every
EVR. This data is initialized to zero when the EVR starts, and overwritten
whenever the EVR receives an event frame with DBus data. Depending on
configuration this is either every frame, or every second frame (See fig. 2).

The DBus can thus be used to distribute either periodic, or non-periodic, signals
with bandwidth up to § (or 1) of the Event clock.

The bits of the DBus can be routed to physical output. A special feature of
DBus bit 4 allows its rising edge to increment the timestamp counter (depending
on mode).

1.1.3 Data Buffers

When enabled, a protocol is used to broadcast arbitrary byte arrays from the
EVG to all EVRs. Bytes are sent one at a time in the data part of every second
frame. Special 8b10b codes are used to mark the beginning and end for each
transfer. A simple checksum is also sent. The 230 series hardware allows buffers
up to 2047 bytes in length.

In keeping with the convention of the original MRF EPICS Support package
the first byte of a buffer is used as a header (Protocol ID) to identify it. No
restrictions are placed on the body of buffer.

1.1.4 Event Clock Phase

The use of 8b10b encoding allows each EVR’s local oscillator to lock to the
EVG’s reference clock. This allows operation at speeds higher then the event
clock rate. This is used by the CML outputs described in section 2.5.

1.2 Global Time Distribution

The model of time implemented by the MRF hardware is two 32-bit unsigned
integers: counter, and “seconds”. The counter is maintained by each EVR and
incremented quickly. The value of the “seconds” is sent periodically from the
EVG at a lower rate.

During each “second” 33 special codes (see sec. 1) must be sent. The first 32
are the shift 0/1 codes which contain the value of the next “second”. The last is
the timestamp reset event. When received this code transfers the new “second”
value out of the shift register, and resets the counter to zero. These actions
start the next “second”.

Note that while it is referred to as “seconds” this value is an arbitrary integer
which can have other meanings. Currently only one time model is implemented,
but implementing others is possible.

Upstream Downstream
Event Link Event Link

|
,,/"/ T / T ~—

lEvent Codes] [DBUS] lEvent CodesHC|0Ck F’haSE] [DBUS]

Prescaler/
Mapplng RAM D|V|ders

nputs \M[Pulse Generators —_ Outputs

Figure 3: Logical connections inside an EVR

1.2.1 Light Source Time Model

In this model the “seconds” value is an actual 1Hz counter. The software default
is the POSIX time of seconds since 1 Jan. 1970 UTC. Each new second is started
with a trigger from an external 1Hz oscillator, usually a GPS receiver. Most
GPS receivers have a one pulse per second (PPS) output. Time is converted to
the EPICS epoch (1 Jan. 1990) for use in the IOC.

Several methods of sending the seconds value to the EVG are possible:

External hardware has been created by Diamond light source which com-
municates with a GPS receiver over a serial (RS232) link to receive the times-
tamp and connects to two external inputs on the EVG. These inputs must be
programmed to send the shift 0/1 codes.

Time from an NTP server can be used without special hardware. This
requires only a 1Hz (PPS) signal coming from the same source as the NTP
time. Several commerial vendors supply dedicated NTP servers with builtin
GPS receivers and 1Hz outputs. A software function is provided on the EVG
which is triggered by the 1Hz signal. At the start of each second it sends the
next second (current+1), which will be latched after the following 1Hz tick.

2 Receiver Functions

Internally an EVR can be thought of as a number of logical sub-units (Fig. 3)
connecting the upstream and downstream event links to the local inputs and
outputs. These sub-units include: the Event Mapping Ram, Pulse Generators,
Prescalers (clock dividers), and the logical controls for the physical inputs and
outputs.

2.1 Pulse Generators

Each pulse generator has a an associated Delay, Width, Polarity (active low /high),
and (sometimes) a Prescaler (clock divider). When triggered by the Mapping
Ram it will wait for the Delay time in its inactive state. Then it will transi-
tion to its active state, wait for the Width time before transitioning back to its
inactive state.

Resolution of the delay and width is determined by the prescaler. A setting of
1 gives the best resolution.

In addition, the Mapping Ram can force a Pulse Generator into either state
(Active/Inactive).

Note: Some Pulse Generators do not have a prescaler. In this case the prescaler
property will always read 0 instead of >=1.

2.2 Event Mapping Ram

The Event Mapping Ram is a table used to define the actions to be taken by an
EVR when it receives a particular event code number. The mapping it defines is
a many-to-many relations. One event can cause several actions, and one action
can be caused by several events.

The actions which can be taken can be grouped into two catagories: Special
actions, and Pulse Generator actions. Special actions include those related to
timestamp distribution, and the system heartbeat tick (see § 10.8.2 on page 38
for a complete list). Each Pulse Generater has three mapable actions: Set
(force active), Reset (force inactive), and Trigger (start delay program). Most
applications will use Trigger mappings.

2.3 Prescalers (Clock Divider)

Prescaler sub-units take the EVR’s local oscillator and output a lower frequency
clock which is phased locked to the local clock, which is in sync with the global
master clock. The lower frequency must be an integer divisor of the Event clock.

2.4 Outputs (TTL)

This sub-unit represents a local physical output on the EVR. Each output may
be connected to one source: a Distributed Bus bit, a Prescaler, or a Pulse
Generator (see § 10.5.1 on page 33 for a complete list).

2.5 Outputs (CML and GTX)

Current Mode Logic outputs can send a bit pattern at the bit rate of the event
link bit clock (20x the Event Clock). This pattern may be specified in one of
three possible ways.

As four 20 bit sub-patterns (rising, high, falling, and low). As two periods (high
and low). These specify a square wave with variable frequency and duty factor.
As an arbitrary bit pattern (<= 40940 bits) which begins when the output goes
[TODO: high or low?].

In the sub-pattern mode. The rising and falling patterns are transmitted when
the output level changes, while the high and low patterns are repeated in be-
tween level changes.

The GTX outputs found only on the EVRTG (e~ gun) receiver function similarly
to the CML outputs at twice the frequency. Thus for this device patterns are
40 bits.

2.6 Inputs

An EVR’s local TTL input can cause several actions when triggered. It may be
directly connected to one of the upstream Distributed Bus bits, it may cause an
event to be sent on the upstream links, or applied to the local Mapping Ram.

The rising edge of a local input can be timestamped.

2.7 Global Timestamp Reception

Each EVR receives synchronous time broadcasts from an EVG. Software may
query the current time at any point. The arrival time of certain event codes
can be saved as well. This can be accomplished with the ’event’ record device
support.

Each EVR may be configured with a different method of incrementing the times-
tamp counter. See section 10.1.12.

2.8 Data Buffer Tx/Rx

A recipient can register callback functions for each Protocol ID. It will then be
shown the body of every buffer arriving with this ID.

A default recipient is provided which stores data in a waveform record.

3 What is Available?

More infomation on the Micro Research hardware can be found on their website
http://www.mrf.fi/.

The software discussed below can be found on the EPICS application project
on SourceForge http://sourceforge.net/projects/epics/.

The latest developments can be found in the 'mrfioc2’ Git VCS repository.
https://github.com/epics-modules/mrfioc2

3.1 Prerequisites

Build system required modules

EPICS Base >= 3.14.8.2 EPICS Core
http://www.aps.anl.gov/epics/base/R3-14/index.php

MSI Macro expansion tool
http://wuw.aps.anl.gov/epics/extensions/msi/index.php

devLib2 >= 2.6 PCI/VMEG64x Hardware access library
https://github.com/epics-modules/devlib2/

Build system optional modules. Not required, but highly recommended.

autosave Automatic save and restore on boot
http://www.aps.anl.gov/bcda/synApps/autosave/autosave.html

iocstats Runtime IOC statistics (CPU load, ...)

http://www.slac.stanford.edu/comp/unix/package/epics/site/devIocStats/
http://sourceforge.net/projects/epics/files/devIiocStats/

Target operating system requirements

RTEMS >—49x
vxWorks >=6.7
Linux >= 2.6.26.

3.2 Source

VCS Checkout
$ git clone https://github.com/epics—modules/mrfioc2.git
Edit ’configure/ CONFIG _SITE’ and ’configure/RELEASE’ then run "make".

The following is a brief tour of the important locations in the source tree relating
to the EVR.

http://www.mrf.fi/
http://sourceforge.net/projects/epics/
https://github.com/epics-modules/mrfioc2
http://www.aps.anl.gov/epics/base/R3-14/index.php
http://www.aps.anl.gov/epics/extensions/msi/index.php
https://github.com/epics-modules/devlib2/
http://www.aps.anl.gov/bcda/synApps/autosave/autosave.html
http://www.slac.stanford.edu/comp/unix/package/epics/site/devIocStats/
http://sourceforge.net/projects/epics/files/devIocStats/

3.2.1 mrfCommon

Some support functions. Contains ‘'mrfCommonlIQO.h’ which devices macros for
access to memory mapped 10. Also the support a library and CLI utilities for
en/decoding the control word for the fractional synthesizer used on EVRs and
EVGs.

3.2.2 mrmShared
Contains code shared between the EVR and EVG. This includes data buffer
transmission.

Also contains the Linux kernel driver stub to allow userspace PCI operations.

3.2.3 evrApp

The MRF IOC has a strong seperation between device and driver support. The
device support and interface definition are in this module. The interface is
defined by the C++ abstract base classes in ’evrApp/src/evr/’. A set of device
support routines is found in ’evrApp/src/dev*.cpp’. Some generic database files
are found in ’evrApp/Db/’.

3.2.4 evrMrmApp

This is the driver for the Modular Register Map (MRM) firmware version for the
Event Receiver. It provides a concrete implementation of the abstract classes
defined in ’evrApp’. It also provides IOC shell functions to instantiate a device in
’evrMrmApp/src/drvemlocsh.cpp’. ’evrMrmApp/Db/evr-*.substitutions’ will

create a complete example database. An example IOC using the database is in
"iocBoot /iocevrmrm /.

3.2.5 evgMrmApp

Driver for the MRM version of the Event Generator. Sequencer management
code can be found in the evgSequencer sub-directory.

4 Supported Hardware

The following devices are supported.

10

| Name [## FP® | # FP UNIV’ | # FP Iuputs® | RTM? |

VME-EVR-230°¢ 4 4 2 Yes
VME-EVR-230RF 77 2 2 Yes
PMC-EVR-230 3 0 1 No
CPCI-EVR-230 0 4 2 Yes?
CPCI-EVRTG-300 2h 2 1 No

%Front panel outputs (TTL)

bFront panel universal output sockets
¢Front panel inputs

dSupports Rear Transition Module
¢This device has not been tested
fOutputs 4,5,6 are CML

9Supports PCI side-by-side module
hGTX outputs

*Special GTX interlock

5 I0C Deployment

This section outlines a general strategy for adding an EVR to an I0C. First
general information is presented, followed by a section describing the extra steps
needed to use mrfioc2 under Linux.

An example IOC shell script is included as “iocBoot/iocevrmrm/st.cmd”.

5.1 Device names

All EVGs and EVRs in an IOC are identified by an unique name. This is first
given in the IOC shell functions described below, and repeated in the INP or
OUT field of all database records which reference it. Both EVGs, and EVRs
share the same namespace. This restriction is needed since some code is shared
between these two devices.

5.2 VMEG64x Device Configuration

The VME bus based EVRs and EVGs are configured using one of the following
IOC shell functions.

Receiver
mrmEvrSetupVME("anEVR" , 3, 0x30000000, 4, 0x28)

In this example EVR “anEVR” is defined to be the VME card in slot 3. It is

given the A32 base address of 0x30000000 and configured to interrupt on level
4 with vector 0x28.

11

Note: VME64x allows for jumpless configuration of the card, but not automat-
ically assignment of resources. Selection of an unused address range and IRQ
level /vector is necessarily left to the user.

Note: Before setup is done the VMEG64 identifer fields are verified so that
specifying an incorrect slot number is detected and setup will safely abort.

5.3 PCI Device Configuration

PCI bus cards are identified with the mrmEvrSetupPCI() IOC shell function.

Since PCI devices are automatically configured only the geographic address
(bus:device.function) needs to be provided. This information can usually be
found at boot time (RTEMS) or in /proc/bus/pci/devices (Linux).

The IOC shell function devPCIShow() is also provided to list PCI devices in
the system.

Receiver
mrmEvrSetupPCI ("PMC', 1, 2, 0)

This example defines EVR “PMC” to be bus 1 device 2 function 0.

Note: Before setup is done the PCI identifer fields are verified so that specifying
an incorrect location is detected and setup will safely abort.

5.4 PCI Setup in Linux

In order to use PCI EVRs in the Linux operating system a small kernel driver
must be built and loaded. The source for this driver is found in 'mrmShared/lin-
ux/’. This directory contains a Makefile for use by the Linux kernel build system
(not EPICS).

To build the driver you must have access to a configured copy of the kernel source
used to build the target system’s kernel. If the build and target systems use the
same kernel, then the location will likely be ’/lib/modules/‘uname -r‘/build’. In
case of a cross-built kernel the location will be elsewhere.

To build the module for use on the host system:

$ make —C /location/of/mrmShared/linux \
KERNELDIR=/1ib /modules/‘uname —r ¢/ build modules install
$ sudo depmod —a

$ sudo modprobe mrf

Building for a cross-target might look like:

$ make —C /location/of/mrmShared/linux \
KERNELDIR~/location/of /kernel /src \
ARCH=arm CROSS COMPILE=/usr/local/bin /arm— \
INSTALL MOD PATH=/location/of/target /root \
modules install

12

Once the module is installed on the running target the special device file asso-
clated with each EVR must be created. If your target system is running UDEV
this will happen automatically, if not then you must do the following.

grep mrf /proc/devices
254 mrf
mknod —m 666 /dev/uio0 c 254 0

If may be necessary to change the file permission to allow the IOC process
to open it. UDEV users may find one of the following commands useful for
constructing a rules file.

udevinfo —a —p $(udevinfo —q path —n /dev/uio0)
udevadm info —a —p $(udevadm info —q path —n /dev/uio0)

Each additional device adds one to the number (uiol, uio2, ...).

Once the device file exists with the correct permissions the IOC will be able to
location it based on the bus:device.function given an to mrmEvrSetupPCI().

Note: UIO numbers are not considered during setup since these may change
after a reboot. To ensure repeatability only PCI immutable ID fields and the
address triplet (bus:device.function) are used.

5.5 Example Databases

The MRFIOC2 module includes example database templates for all supported
devices (see §4). While each is fully functional, it is expected that most sites
will make modifications. It is suggested that the original be left unchanged
and a copy be made with the institute name and other information as a suffix.
(evr-pmc-230.substitutions becomes evr-pmec-230-nsls2.substitutions).

The authors would like to encourage users to send their customized databases
back so that they may be included as examples in future releases of MRFIOC2.

The templates consist of a substitutions file for each model (PMC, ¢cPCI, VME-
RF). This template instanciates the correct number of records for the input-
s/outputs found on each device. It also includes entries for event mappings and
database events which will be frequent targets for customization.

Each substitutions file will be expanded during the build process with the MSI
utility to create a database file with two undefined macros (P and C). 'SYS’
and 'D’ define a common prefix shared by all PVs and must be unique in the
system. ’EVR’ is a card name also given as the first argument of one of the
mrmEvrSetup*() IOC shell functions (unique in each IOC).

Thus an I0C with two identical VME cards could use a configuration like:

mrmEvrSetupVME("evrl" ,5,0x20000000,3,0x26)
mrmEvrSetupVME("evr2" ,6,0x21000000,3 ,0x28)
dbLoadRecords ("evr—vmerf—230.db", "SYS=test , D—=evr:a, EVR=evrl")
dbLoadRecords ("evr—vmerf—230.db", "SYS=test ,_D=evr:b,_EVR=evr2")

13

5.5.1 autosave

All example database files include “info()” entries to generate autosave request
files. The example IOC shell script “iocBoot/iocevrmrm /st.cmd” includes the
following to configure autosave.

save restoreDebug (2)

dbLoadRecords ("db/save restoreStatus.db", "P=mrftest:")
save restoreSet status prefix("mrftest:")

set savefile path("${mnt}/as","/save")
set requestfile path ("${mnt}/as","/req")

This enables some extra debug information which is useful for testing, and loads
the autosave on-line status database. It also sets the locations where .sav and
.req files will be searched for.

set pass0 restoreFile ("mrf settings.sav")

set pass0 restoreFile ("mrf values.sav")

("mrf
set passl restoreFile ("mrf values.sav")
set passl restoreFile ("mrf waveforms.sav")

Sets three files which will be loaded. The “values” are loaded twices as is the
autosave convention.

iocInit ()

makeAutosaveFileFromDbInfo("as/req/mrf settings.req", "autosaveFields pass0")
makeAutosaveFileFromDbInfo("as/req/mrf values.req", "autosaveFields")
makeAutosaveFileFromDbInfo("as/req/mrf waveforms.req", "autosaveFields passl")

After the IOC has started the request files are generated. This is where the
“info()” entries in the database files are used.

create_monitor set ("mrf settings.req", 5 , "")
create _monitor set ("mrf values.req", 5 , ""
create_monitor set ("mrf waveforms.req", 30 , "")

Finally the request files are re-read and monitor sets are created.

6 Testing Procedures

This section presents several step by step procedures which may be useful when
testing the function of hardware and software.

In the “documentation/demo/” directory several IOC shell script files with the
commands given in this section as well as other examples.

14

6.1 EVG and EVR Checkout

This procedure requires both a generator, receiver, and a fiber jumper cable to
connect, them.

It is assumed that no cables are connected to the front panel of either EVG or
EVR. The example “iocBoot/iocevrmrm /st.cmd” script is used with SYS=TST
and D=evr for the receiver and D=evg for the generator. Verify this with the
following commands at the IOC shell.

>dbgrep ("* Link : CIk—SP")

TST{evr}Link: Clk—SP

>dbgrep ("*FracSynFreq—SP")
TST{evg—EvtClk}FracSynFreq—SP

The following examples use the IOC shell commands dbpr () and dbpf (). Re-
mote use of caput and caget is also possible.

>dbpf ("TST{evg—EvtClk}Source—Sel" ,"FracSyn")
>dbpf("TST{evg—EvtClk}FracSynFreq—SP" ,"125.0")
~dbpf ("TST{evr }Link: Clk—SP" ,"125.0")
>dbpf("TST{evr}Ena—Sel"," Enabled")

>dbpr ("TST{evr}Link—Sts")

' . VAL: 0
This sets the event link speed on both the EVR and EVG. The EVG is com-
manded to use its internal synthesizer instead of an external clock.

Now use the fiber jumper cable to connect the TX port of the generator to the
RX port of the receiver. (The Tx port will have a faint red light coming from
it).

Once connected the red link fail LED should go off and the link status PV
should read OK (1).

>dbpr ("TST{evr}Link—Sts")

. VAL: 1

At this point the receivier has locked to the generator signal, but no data is
being sent. This includes the heartbeat event. Thus the heartbeat timeout
counter should be increasing.

>dbpr ("TST{evr}Cnt:LinkTimo—I")

... VAL: 45
>dbpr ("TST{evr}Cnt:LinkTimo—-I")

. VAL: 47

Now we will set up the generator to send a periodic event code.

15

>dbpf ("TST{evg—Mxc:0} Prescaler —SP", "125000000")
>dbpr ("TST{evg—Mxc:0} Frequency—RB" ,1)

EGU: Hz

... VAL: 1

>dbpf ("TST{evg—TrigEvt:0} EvtCode—SP", "122")
>dbpf("TST{evg—TrigEvt:0} TrigSrc—Sel", "Mxc0")
>dbpf ("TST{evg—TrigEvt:1}EvtCode—SP", "125")
>dbpf("TST{evg—TrigEvt:1} TrigSrc—Sel", "Mxc0")
>dbpf ("TST{evr}Evt: Blink0—SP", "125")

This configures multiplexed counter 0 (Mxc #0) to trigger on the event clock
frequency divided by 125000000. In this case this gives 1Hz. Trigger event #0
is then configured to send event code 122, and trigger event #1 to send code
125, when Mxc #0 triggers.

At this point both the EVG’s amber EVENT OUT led and the EVR’s EVENT
IN led should flash at 1Hz.

For diagnostics the EVR’s BlinkO mapping is configured to blink the EVR’s
EVENT OUT led when event code 125 is received. Setting to 0 will cause it to
stop blinking.

Event code 122 is the heartbeat reset event. Since it is being sent the link
timeout counter should no longer be increasing.
>dbpr ("TST{evr}Cnt:LinkTimo—-I")

... VAL: 120
>dbpr ("TST{evr}Cnt:LinkTimo—-I")

. VAL: 120

At this point, if the system is given an NTP server the EVG will get a correct
(but unsynchronized) time and messages similar to the following will be printed.

Starting timestamping
epicsTime: Wed Jun 01 2011 17:54:53.000000000
TS becomes valid after fault 4de6b533

The first two lines come from the EVG and indicate that it is sending a times-
tamp. The third line comes from the EVR and indicates that it is receiving a
correct, timestamp.

The counter for the 1Hz event should now be increasing.

>dbpr ("TST{evr}1hzCnt—-I")

. VAL: 5
>dbpr ("TST{evr}1hzCnt—-I")
... VAL: 6

16

6.2 Timestamp Test

An external 1Hz pulse generator is required for this test. It should be connected
to front panel input 0 on the EVG. This is LEMO connector expecting a TTL
signal.

>dbpr ("TST{evr}Link—Sts")

VAL: 1

If the event link status is not OK then perform setup as described in the previous
test.

Check the current time source status

>generalTimeReport (2)
Backwards time errors prevented 0 times.

Current Time Providers: "EVR", priority = 50
Current Time not available
"NTP", priority = 100
Current Time is 2011—-06—02 10:23:26.058125.
"OS Clock", priority = 999
Current Time is 2011-06—02 10:23:26.057101.

Event Time Providers:
"EVR", priority = 50

This shows that the NTP time source is functioning. This is required for this
test.

>dbpf("TST{evg—TrigEvt:1} EvtCode—SP", "125")
>dbpf ("TST{evg—TrigEvt:1} TrigSrc—Sel", "Front0")
~dbpf ("TST{evr}Evt: Blink0—SP", "125")

Sends event code 125 on the rising edge for front panel input 0. For diagnostics
sets the blink mapping. If the led is not blinking then check the 1Hz pulse
generator.

dbpr ("TST{evr}Time: Valid—Sts")
VAL: 1

Indicates that the EVR has received a valid time

>generalTimeReport (2)
Backwards time errors prevented 0 times.

Current Time Providers: "EVR", priority = 50
Current Time is 2011—-06—02 10:26:50.683808.
"NTP", priority = 100
Current Time is 2011—-06—02 10:26:50.681220.
"OS Clock", priority = 999
Current Time is 2011—-06—02 10:26:50.683854.

Event Time Providers:
"EVR", priority = 50

17

Shows that a valid time is now being reported.

$ camonitor TST{evr:3} Time—I

TST{evr:3} Time—I 2011—-06—02 10:32:11.999993 Thu, 02 Jun
TST{evr:3} Time—I 2011-06—02 10:32:12.999993 Thu, 02 Jun
TST{evr:3} Time—I 2011—-06—02 10:32:13.999993 Thu, 02 Jun
TST{evr:3} Time—I 2011—-06—02 10:32:14.999993 Thu, 02 Jun

The timestamp indicator record takes its record timestamp from the arrival of
the 125 event code. As can be seen, this time is stored immediately before the
sub-seconds is zeroed. This can be verified by switching this.

$ caget TST{evr:3}Time—I.TSE

TST{evr:3} Time—I.TSE 125

$ caput TST{evr:3}Time—I.TSE 0

Old : TST{evr:3}Time—I.TSE 125

New : TST{evr:3}Time—I.TSE 0

$ camonitor TST{evr:3} Time—I

TST{evr:3} Time—I 2011-06—02 10:35:31.005655 Thu, 02 Jun
TST{evr:3} Time—I 2011-06—-02 10:35:32.005655 Thu, 02 Jun
TST{evr:3} Time—I 2011-06—02 10:35:33.005655 Thu, 02 Jun
TST{evr:3} Time—I 2011-06—02 10:35:34.005655 Thu, 02 Jun

Now a time latched by software when this record is processed. For real-time
system this time should be stable.

7 Firmware Update

7.1 VME EVRs and EVGs

Update for VME cards is accomplished through the ethernet jack label “10
BaseT”. The procedure covered in the MRF manual.

7.2 cPCI-EVRTG-300

Undocumented.

7.3 PMC-EVR-230

Firmware update for the PMC module EVR is accomplished through a JTAG
interface as with the cPCI-EVRTG-300. For reasons of physical space the JTAG
wires are not brought to a connector, but connected to 4 I/O pins of the PLX
9030 PCI bridge chip. In order to control these pins and update the firmware
some additional software is needed. Software update may be performed by using
either the parallel port support or through JTAG pins. The running Kernel must
be built with the CONFIG _GENERIC GPIO and CONFIG _GPIO SYSFS
options if the latter approach is to be used.

18

2011
2011
2011
2011

2011
2011
2011
2011

10:
10:
10:
10:

10:
10:
10:
10:

32:
32:
32:
32:

35:
35:
35:
35:

12
13
14
15

31
32
33
34

—0400
—0400
—0400
—0400

—0400
—0400
—0400
—0400

If the parallel port support is available, a message is printed to the kernel log
when the Linux kernel module provided with mrfioc2 (mrmShared/linux) is
loaded.

Emulating cable: Minimal

The kernel module also exposes the 4 I/O pins via the Linux GPIO API. The
4 pins are numbered in the order: TCK, TMS, TDO, and TDI. The number of
the first pin is printed to the kernel log when the MRF kernel module is loaded.

GPIO setup ok, JTAG available at bit 252

In this example the 4 pins would be TCK=252, TMS=253, TDO=254, and
TDI=255.

7.3.1 Creating an SVF file from a BIT file

The firmware file will likely be supplied in one of two formats having the ex-
tensions .bit or .svf. If the provided file has the extension .svf then proceed to
section 7.3.2.

To convert a .bit file to a .svf file it is necessary to get the iIMPACT programming
tool from Xilinx. The easiest way to do this is with the “Lab Tools” bundle.

http://www.xilinx.com/support/download/index.htm

The following instructions are for iMPACT version 14.2.

1. Install and run the iMPACT program.
2. When prompted to create a project click cancel

3. On the left side of the main window is a pane titled “iMPACT FLows”.
Double click on “Create PROM File”

4. Select “Xilinx Flash/PROM” and click the first green arrow.

5. Select “Platform Flash” and “xcf08p” and click “Add Storage Device” then
the second green arrow.

6. Select an output file name and path. Ensure that the file format is MCS.
Click OK

7. Several small dialogs will appear. When prompted to “Add device” select
the .bit file provided by MRF.

8. When prompted to add another device click No.

9. On the left side of the main window is a pane titled “iMPACT Processes”.
Double click on “Generate File”.

19

http://www.xilinx.com/support/download/index.htm

10. The .mcs file should now be written.

11. Exit and restart iMPACT.

See http://www.xilinx.com/support/documentation/user_guides/ugl6l.
pdf starting on page 67 for more detailed instructions.

1. Create a new iMPACT project. Select “Prepare a Boundary-Scan File”
and the SVF format.

2. When prompted, select a name for the resulting .svf file

3. When prompted to “Assign New Configuration File” select the .mcs file
just created.

4. When prompted to select a PROM type choose “xcf08p”

5. An icon representing the PROM should now appear as the only entry in
the JTAG chain.

6. Right click on this icon and select Program.
7. In the dialog which appears check Verify and click OK.
8. The .svf file should now be written.

9. Exit iMPACT

7.3.2 Programming with UrJTAG

http://urjtag.org/

As of August 2012 support to the Linux GPIO “cable” was not included in any
UrJTAG release. It is necessary to checkout and build the development version
(commit id b6945fc65 from 9 Aug. 2012 works). This requires the Git version
control tool. To build and use UrJTAG on target system, there may be a need
to install certain packages in the system.

$ sudo apt—get install pciutils make autoconf autopoint libtool
pkg—config bison libusb —1.0-0—dev libusb—dev flex python—dev

With all necessary tools available, configure and build UrJTAG.
$ git clone git://urjtag.git.sourceforge .net/gitroot/urjtag/urjtag
$ cd urjtag/urjtags

$./autogen.sh —disable—nls —disable —python —prefix=$PWD/usr
$ make && make install

Firmware update may be performed using the parallel port support if available,
e.g. when loading the kernel driver:

20

http://www.xilinx.com/support/documentation/user_guides/ug161.pdf
http://www.xilinx.com/support/documentation/user_guides/ug161.pdf
http://urjtag.org/

@hH PR PR

dmesg

69.046938]
69.047007]
69.047589]
69.047626]
69.144196]
69.144239]

sudo modprobe uio
sudo modprobe parport
sudo insmod mrf.ko

mrf—pci
mrf—pci
mrf—pci
mrf—pci
mrf—pci
mrf—pci

0000:
0000:
0000:
0000:
0000:
0000:

08:
09:
09:
09:
09:
09:

0d.
Oe.
Oe.
Oe.
Oe.
Oe.

o CcoCcoC

MRF Setup complete

PCI IRQ 72 —> rerouted to legacy IRQ 16
GPIOC 00249412

GPIO setup ok, JTAG available at bit 252
Emulating cable: Minimal

MRF Setup complete

The “Emulating cable: Minimal” message indicates that Minimal JTAG cable
type can be used to communicate with a device. A ppdev device should be
available for usage with UrJTAG:

$ sudo modprobe ppdev

$ dmesg

[69.028268] ppdev: user—space parallel port driver

$ ls /dev | grep parport

parport0

On the target system run UrJTAG as root:

./usr/bin/jtag
jtag> cable Minimal ppdev /dev/parport0

Initializing ppdev port /dev/parport0

jtag> detect
IR length: 26
Chain length: 2

Device Id: 00100001001000111110000010010011 (0x21231093)
(0x093)

Manufacturer:
Part (0):
Stepping:
Filename :

Manufacturer:
Part (1):
Stepping:
Filename :
jtag> part 1

Xilinx

xc2vpd (0x123E)

2

/epics /urjtag/share/urjtag/xilinx /xc2vp4/xc2vp4
Device Id: 11100101000001010111000010010011 (0xE5057093)
(0x093)

Xilinx

xcf08p (0x5057)

14

/epics/urjtag/share/urjtag/xilinx /xcf08p/xcf08p

jtag> svf /location/of /pmc—prom.svf stop progress

Alternatively, a GPIO cable may be utilized if the kernel was built with options
required (CONFIG GENERIC GPIO and CONFIG_GPIO SYSFS), on the
target system run UrJTAG as root (or a user which can export and use GPIO

pins).

./usr/bin/jtag
jtag> cable gpio tck=252 tms=253 tdo=254 tdi=255

jtag> detect
IR length: 26
Chain length: 2

21

Device Id: 00100001001000111110000010010011 (0x2123E093)
Manufacturer: Xilinx (0x093)

Part (0): xc2vp4d (0x123E)
Stepping: 2
Filename: /epics/urjtag/share/urjtag/xilinx /xc2vp4 /xc2vp4

Device Id: 11100101000001010111000010010011 (0xE5057093)
Manufacturer: Xilinx (0x093)

Part (1): xcf08p (0x5057)
Stepping: 14
Filename: /epics/urjtag/share/urjtag/xilinx /xcf08p/xcf08p

jtag> part 1
jtag> svf /location/of/pmc—prom.svf stop progress

Note that the device IDs may not be correctly recognized. This will not effect
the programming process.

If no errors are printed then the update process was successful. The new
firmware will not be loaded until the PMC module is reset (power cycle sys-
tem).

8 NTPD Time Source

It is possible to use an EVR as a time source for the system NTP daemon on
Linux. This is implemented using the shared memory clock driver (#28).

http://www.eecis.udel.edu/"mills/ntp/html/drivers/driver28.html
An IOC is configured to write data to a shared memory segment by adding a
line to its start script.

time2ntp ("evrname", N)

Here “evrname” is the same name given when configuring the EVR (see 5.1).
The memory segment ID number N must be between 0 and 4 inclusive. The
NTP daemon enforces that segments 0 and 1 require root permissions to use.
Segments 2, 3, and 4 can be accessed by an unprivileged user.

It is suggested to use an unprivileged segment to avoid running the IOC as root.
However, this would allow any user on the system to effectively control NTPD.
So it is not recommended for systems with untrusted users.

The NTP daemon is configured from the file /etc/ntp.conf. On Debian Linux
systems using DHCP it will be necessary to modify /etc/dhcp/dhclient-ezit-
hooks.d/ntp instead.

server 127.127.28.N minpoll 1 maxpoll 2 prefer
fudge 127.127.28.N refid EVR

This will configure NTPD to read time from segment N. Here N must match
what was specified for time2ntp().

When functioning correctly NTPD status should look like:

22

http://www.eecis.udel.edu/~mills/ntp/html/drivers/driver28.html

$ ntpq —p

remote refid st t when poll reach delay offset jitter
+time.cs.nsls2 .1 .GPS. 1 u 29 64 377 2.684 —0.001 0.089
*SHM(3) .EVR.. 01 7 8 377 0.000 0.000 0.001

The shared memory interface can only be used to provide time with microsecond
precision. So this measurement, taken from a production NSLS2 server, showing
a jitter of =1 microsecond is the best which can be obtained.

If the propogation time from the time source to the EVR is known, then the
offset can be given by adding “timel 0.XXX” to the fudge’ line in ntp.conf.

9 Implementation Details

Details of some parts of the driver which may be useful in understanding (and
trouble shooting) the behavior of the driver.

9.1 Event code FIFO Buffer

Each EVR implements a hardware First In First Out buffer for event codes. All
occurrences of certain “interesting” event code number, along with individual
arrival times, are placed in this buffer. Two interrupt condition are generated
by the FIFO: not empty, and full. The first is asserted when the first event
added, and cleared when the last event is removed. The second occurs when
last free entry in the buffer is consumed. Further event occurrences are lost.

When the not empty interrupt occurs the fifo drain task (named EVRFIFO in
epicsThreadShowAll()) is woken up by a message queue. This task runs at scan
high priority (90). Once awakened it will remove at most 512 event codes from
the buffer before sleeping again. The number 512 is an arbitrary number chosen
to prevent the starvation of lower priority tasks if a high frequency event code
is accidentally mapped into the FIFO. A minimum sleep time is enforced by the
mrmEvrFIFOPeriod variable. This governs the maximum rate that events
can be reported through the FIFO. Setting to 0 will disable it.

Each of the event codes 1-255 has an IOSCANPVT and a list of callback func-
tions (type EVR::eventCallback) which will be invoked when the event occurs.

An invocation of an IOSCANPVT list may place an arbitrary number of CALL-
BACKSs into the message queue of the three EPICS callback scan tasks (High,
Medium, and Low). If these message queues are overflowed then CALLBACK
in other drivers my be lost. The scanloRequest() function does not report this
error.

To avoid this rather disastrous occurrence the EVR driver will not re-run the
scan list for an event, until all actions at all priorities from the previous run

23

have finished. This is implemented by placing a special sentinel CALLBACK in
all three queues. An event will not be re-run until all three of the CALLBACK
have run.

The FIFO servicing code can indicate two error conditions. Occurrences of
these errors are recorded in the FIFO Overflow Count and FIFO Over rate
counters.

The FIFO Overflow Count gives the number of times the hardware FIFO buffer
has overflowed. This is a serious error since arbitrary event code (including the
timestamping codes) will be lost.

The FIFO Over rate counter counts the number of times any event reoccurred
before the actions of the last occurrence were finished processing. This is less
serious since other event codes are not effected.

9.2 Data Buffer reception

Each EVR can receive a single data buffer. Once a data message has been
received, the reception engine is disabled to allow time to download the buffer.
Then the engine can be re-enabled in preparation for the next message. An
interrupt is generated when the message has been fully received, and the engine
disabled.

Instead of a separate thread, buffer reception is implemented as a two stage
callback run by the High (first) and Medium (second) priority scan tasks. The
first callback copies the buffer into memory and immediately re-enables buffer
reception, it then passes the data to the second callback. This callback passes
the buffer to a list of user callback functions which have registered interest in
the Protocol ID found in the message header.

9.3 Timestamp validation

It is impossible to verify a time without a second trusted reference. Since such
a reference is not generally available, the driver can only make some checks
against corruption.

The seconds part of the timestamp should only change when the 1Hz reset event
(125) is received from the EVG. Therefore a callback is attached to that event
code. When a new seconds value arrives it is compared to the previous stored
value. If it is exactly 1 greater then it is taken to be the new seconds value. If
it is not then the EVR time is declared invalid.

When the time is invalid, it can only become valid after five sequential seconds
values are received. Any out of sequence value resets the count.

24

10 EVR Device Support Reference

The EPICS support module for MRF devices consists of a number of supports
which are generally tied to a specific logical sub-unit. Each sub-unit may be
thought of as an object having a number of properties. For example, each Delay
Generator has properties 'Delay’ and "Width’. These properties can be read or
modified in several ways. A delay can specified as an integer number of ticks
of its reference clock (hardware view), or in seconds as a floating point number
(user view).

In this example the properties 'Delay’ and "Width’ should be settable in exact
integer as well as the more useful, but imprecise, floating point units (eg. sec-
onds). This needs to be accomplished by two different device supports (longout,
and ao). Of course it is also useful to have some confirmation that settings have
been applied so read-backs are desireable (longin, ai).

Some of the device supports defined are as follows. The full list is given in
mrfCommon/src/mrfCommon.dbd.

device (longin , INST IO, devLIFromUINT32, "Obj.Prop_uint32")
device(longin , INST IO, devLIFromUINT16, "Obj.Prop_uintl6")
device(longin , INST IO, devLIFromBool, "Obj_Prop_bool")

device(ai , INST IO, devAOFromDouble, "Obj_.Prop_double")
device(ai , INST IO, devAOFromUINT32, "Obj_.Prop_uint32")
device(ai , INST IO, devAOFromUINT16, "Obj.Prop_uintl6")

Unless otherwise noted, all device support use INST IO input/output links
with the format:

@QOBJ=$ (OBJECINAME) , PROP=Property Name

Since the Pulser sub-unit has the property 'Delay’ which supports both integer
and float settings, the following database can be constructed.

record (ao, "$(PN)Delay—SP")
{

field (DTYP, "Obj_Prop.double")

field (OUT , "@OBJ-$(OBJ), PROP-Delay")
field (PINI, "YES")

field (DESC, "Pulse_Generator_$(PID)")
field (FLNK, "$(PN)Delay-RB")

}

record(ai, "$(PN)Delay-RB")

field (DTYP, "Obj_Prop.double")
field (INP , "@OBJ=$(OBJ) , PROP=Delay")
field (FLNK, "$(PN)Delay:RawRB")

}

record(longin , "$(PN)Delay:RawRB")
field (DTYP, "Obj_Prop.uint32")

field (INP , "@OBJ=$ (OBJ) , PROP=Delay")
}

25

This provides setting in engineering units and readbacks in both EGU and raw
for the delay property.

Note: In is inadvisible to have to more then one output record pointing to the
same property of the same device. However, it is allowed since there are cases
where this is desireable.

The following sections list the properties for all sub-units with functional de-
scriptions.

10.1 Global

Properties in this section apply to the EVR as a whole. The object Name is given
as the first argument of mrmEvrSetupPCI() or mrmEvrSetupVME().
This name will be refered to afterwards as $(OBJ).

See: evrApp/Db/evrbase.db

| Property Name | Type(s) | Writeable | I/O Intr | Notes |
Enable bool Yes
PLL Lock Status bool No
Link Status bool No X
Timestamp Valid bool No X
Model uint32 No
Version uint32 No
Sw Version string No
FIFO Overflow Count | uint32 No
FIFO Over rate uint32 No
HB Timeout Count uint32 No X
Clock double Yes
Timestamp Source uint32 Yes
Timestamp Clock double Yes
Timestamp Prescaler | uint32 No
Timestamp No
Event Clock TS Div uint32 No
Receive Error Count uint32 No X

For example, the boolean property Enable could be written by the following
record.

record (bo, "$(P)ena") {
field (DTYP, "Obj Prop bool")
field (OUT , "@QOBJ=$(OBJ), PROP=Enable")

}

10.1.1 Enmnable

Type(s): bool

26

Master enable for the EVR. If not set then very little will happen.

10.1.2 PLL Lock Status

Type(s): bool

This indicates whether the phase locked loop which synchronizes an EVR/’s local
oscilator with the phase of the EVG’s oscilator. Outputs will not be stable unless
the PLL is locked.

Except for immediately (< 1sec) after a change to the fractional synthesizer
this property should always read as true (locked). Reading false for longer then
one second is likely an indication that the fractional synthesize is misconfigured,
or that a hardware fault has occured.

10.1.3 Link Status

Type(s): bool

Indicates when the event link is active. This means that the receiver sees light,
and that valid data is being decoded.

A reading of false may be caused by a number of conditions including: EVG
down, fiber unplugged or broken, and/or incorrent fractional synthesizer fre-
quency.

10.1.4 Timestamp Valid

Type(s): bool

Indicates if the EVR has a current, valid timestamp. Condition under which
the timestamp is declared invalid include:

e TS counter reset event received, but “seconds” value not updated.

e Found timestamp with previous invalid value. Catches old timestamp in
buffers.

e TS counter exceeded limit (eg. missed reset event)

e New “seconds” value is less then the last valid values, or more then two
greater then the last valid value. (Light Source time model only). This
will reject single “bad” values sent by the EVG.

e Event Link error (Status is error).

The timestamp will become valid when a new “seconds” value is received from
the EVG.

27

10.1.5 Model

Type(s): uint32

The hardware model number.

10.1.6 Version

Type(s): uint32

The firmware version number.

10.1.7 Sw Version

Types(s): string

A string describing the version of the driver software. This is captured when
the driver is compiled.

10.1.8 FIFO Overflow Count

Type(s): uint32

Counter the number of hardware event buffer overflows. There is a single hard-
ware buffer for all event codes. When it overflows arbitrary events will fail to be
delivered to software. This can cause the timestamp to falsely be invalidated,
and can disrupt database processing which depends on event reception.

This is a serious error which should be corrected.

Note: An overflow does not effect physical outputs.

10.1.9 FIFO Over rate

Type(s): uint32
Counts overflows in all of the per event software buffers.

This indicates that the period between successive events is shorter then the
runtime of the code (callbacks, and database processing) that is causes. Extra
events are being dropped and cause no action.

Actions of other event codes are not effected.

10.1.10 HB Timeout Count

Type(s): uint32

The number of times the hardware heartbeat timer has expired. This indi-
cates that the EVG is not sending event code 122 which may mean that it is
misconfigured or hung.

28

10.1.11 Clock

Type(s): double

Frequency of an EVR’s local oscilator. This must be close enough to the EVG
master oscilator to allow the phase locked loop in the EVR to lock.

The native analog units are Hertz (Hz). This can be changed with the LINR
and ESLO fields. Use ESLO of 1le-6 to allow user setting/reading in MHz.

10.1.12 Timestamp Source

Type(s): uint32
Determines what causes the timestamp event counter to tick. There are three

possible values.

Event clock Use an integer divisor of the EVR’s local oscilator.

Mapped code(s) Increments the counter whenever certain events arrive. These
codes can be defined using special mapping records.

DBus 4 Increments on the 0->1 transition of DBus bit #4.

10.1.13 Timestamp Clock

Type(s): double

Specifies the rate at which the timestamp event counter will be incremented.
This determines the resolution of all timestamps.

This setting is used in conjunction with the *Timestamp Source’.

When the timestamp source is set to "Event clock" this property is used to
compute an integer divider from the EVR’s local oscilator frequency to the
given frequency. Since this may not be exact it is recommended to read back
the actual divider setting via the "Timestamp Prescaler" property.

In all modes this value is stored in memory and used to convert the timestamp
event counter values from ticks to seconds.

By default the analog units are Hertz (Hz). This can be changed with the LINR
and ESLO fields. Use ESLO of 1le-6 to allow user setting/reading in MHz.

10.1.14 Timestamp Prescaler

Type(s): uint32

When using the "Event clock" timestamp source this will return the actual
divisor used. In other modes it reads 0.

29

10.1.15 Timestamp

Special device support.

When processed creates a human readable string with either the current event
link time, or the event link time when code # was last received. If Code is
omitted or O then the current wall clock time is used. Code may also have any
valid event number 1-255. Then it will print the time of the last received event.

record (stringin , "$(P)Time—I")

{
field (DTYP,

(

field (INP
field (SCAN,
field (EVNT,

"EVR Timestamp")

"@OBJ=$ (OBJ), Code=0")

"Event ")
"§ (EVNTLHZ)")

10.1.16 Event Clock TS Div

Type(s): uint32

This is an approximate divider from the event link frequency down to 1IMHz. It

is used to determine the heartbeat timeout.

10.1.17 Receive Error Count

Type(s): uint32

The number of event link errors which have occurred.

10.2 SFP

Information and status from the Small Form factor Plugable (SFP) transceiver
module. Access to this feature requires EVR firmward version 5 (starting with
25 May 2012). It is automatically disabled at runtime if an unsupported version

is detected.

| Property Name | Type(s) | Writeable |

Notes

Update bool Yes Triggers read of the SFP EEPROM
Vendor string No Module vendor name
Part string No Vendor’s part number
Rev string No Part revision
Date string No Date of manufacture
Serial string No SEFP module serial number
Temperature uint32 No Module temperature in C
Link speed uint32 No Bit rate
Power TX uint32 No Optical power of SFP transmitter
Power RX double No Optical power seen by SFP receiver

30

10.3 Pulse Generator

Properties in this section apply to the Pulse Generator (Pulser) sub-unit named
$(OBJ):Pul# where # is a number between 0 and 15.

See: evrApp/Db/evrpulser.db

| Property Name | Type(s) | Writeable | I/0 Intr | Notes |
Enable bool Yes
Polarity bool Yes
Prescaler bool Yes
Delay double, uint32 Yes
Width double, uint32 Yes

For example, the property Delay could be set by either of the following records.

record (ao, "$(D)ena") {
field (DTYP, "Obj Prop double")
field (OUT , "@OBJ=$(OBJ):Pul#, PROP=Enable")

record (longout , "$(D)ena") {
field (DTYP, "Obj Prop uint32")
field (OUT , "@OBJ=$(OBJ):Pul#, PROP=Enable")

10.3.1 Enmnable

Type(s): bool

When not set, the output of the Pulse Generator will remain in its inactive
state (normally low). The generator must be enabled before mapped actions
will have any effect.

10.3.2 Polarity

Type(s): bool

Reverses the output polarity. When set, changes the Pulse Generator’s output
from normally low to normally high.

10.3.3 Prescaler

Type(s): uint32

Decreases the resolution of both delay and width by an integer multiple. De-
termines the tick rate of the internal counters used for delay and width with
respect to the EVR’s local oscillator.

31

10.3.4 Delay

Type(s): double and uint32

Determines the time between when the Pulse Generator is triggered and when
it changes state from inactive to active (normally low to high).

This can be given in integer ticks, or floating point seconds. This can be changed
with the LINR and ESLO fields. Use ESLO of 1e6 to allow user setting/reading
in microseconds.

10.3.5 Width

Type(s): double and uint32

Determines the time between when the Pulse Generator changes state from
inactive to active (normally low to high), and when it changes back to inactive.

This can be given in integer ticks, or floating point seconds. This can be changed
with the LINR and ESLO fields. Use ESLO of 1e6 to allow user setting/reading
in microseconds.

10.4 Prescaler (Clock Divider)

Properties in this section apply to the Prescaler sub-unit. Prescaler objects are
named $(OBJ):PS# where # is between 0 and 2.

See: evrApp/Db/evrscale.db

10.4.1 Divide

Type(s): uint32
Sets the integer divisor between the Event Clock and the sub-unit output.

By default the analog units are Hertz (Hz). This can be changed with the LINR
and ESLO fields. Use ESLO of 1le-6 to allow user setting/reading in MHz.

10.5 Output (TTL and CML)

Properties in this section apply to the Output sub-unit. Output objects are
named either $(OBJ):FrontOut#, $(OBJ):FrontOutUniv#, or §(OBJ):RearUniv#
where the range of number # depends on the hardware model.

See: evrMrmApp/Db/mrmevrout.db

32

10.5.1 Map

Type(s): uint32

The meaning of this value is determined by the specific implimentation used.

For the MRM implimentation the following codes are valid.

| # | Output Source | # | Output Source |

63 Force High 15 | Pulse generator 15
62 Force Low 14 | Pulse generator 14
42 | Prescaler (Divider) 2 || 13 | Pulse generator 13
41 | Prescaler (Divider) 1 || 12 | Pulse generator 12
40 | Prescaler (Divider) 0 || 11 | Pulse generator 11
39 | Distributed Bus Bit 7 || 10 | Pulse generator 10
38 | Distributed Bus Bit 6 || 9 | Pulse generator 9
37 | Distributed Bus Bit 5 || 8 | Pulse generator 8
36 | Distributed Bus Bit 4 || 7 | Pulse generator 7
35 | Distributed Bus Bit 3 || 6 | Pulse generator 6
34 | Distributed Bus Bit 2 || 5 | Pulse generator 5
33 | Distributed Bus Bit 1 || 4 | Pulse generator 4
32 | Distributed Bus Bit 0 || 3 | Pulse generator 3

2 | Pulse generator 2

1 | Pulse generator 1

0 | Pulse generator 0

10.5.2 Enmnable

Type(s): bool

When set to True the mapping set with the Map property is used. When False

a mapping of Force Low is used.

10.6 Output (CML/GTX only)

Additional properties for Current Mode Logic (CML) and GTX outputs. Out-
put objects are named either $(OBJ):FrontOut#, $(OBJ):FrontOutUniv#, or
$(OBJ):RearUniv# where the range of number # depends on the hardware
model.

See: evrApp/Db/evrcml.db

33

| Property Name |

Type(s)

| Writeable | I/O Intr | Notes]

Enable bool Yes
Power bool Yes
Reset bool Yes
Mode uint16 Yes
Pat Rise UCHAR waveform Yes
Pat High UCHAR waveform Yes
Pat Fall UCHAR waveform Yes
Pat Low UCHAR waveform Yes
Waveform UCHAR waveform Yes
Pat Recycle bool Yes
Freq Trig Lvl bool Yes
Counts Init double, uint32 Yes
Counts High double, uint32 Yes
Counts Low double, uint32 Yes
Freq Mult uint32 No

10.6.1 Emnable
Type(s): bool
Trigger permit.
10.6.2 Power
Type(s): bool
Current driver on.
10.6.3 Reset
Type(s): bool
Pattern reset.
10.6.4 Mode

Type(s): uint16

Selects CML pattern mode. Possible values are: 4x Pattern (0), Frequency (1),

Waveform (2).

4x Pattern Uses the Pat Rise, Pat High, Pat Fall, and Pat Low properties to

store four 20 bit (0 -> Oxfff) sub-patterns.

Frequency Uses the Freq Trig Lvl, Counts High, and Counts Low properties

Waveform Uses the bit pattern stored by the Pattern Set property.

34

10.6.5 Pat Rise/Pat High/Pat Fall/Pat Low/Waveform

Type(s): UCHAR waveform
Each property stores a seperate bit waveform as an array of bytes.

The four patterns are 20 or 40 bit waveforms are sent once at either edge (ris-
ing/falling), and repeatidly when when at a stable level.

Rising and Falling patterns start as soon as the edge is detected and will inter-
rupt the pattern currently being sent.

The High and Low patterns are sent after an edge pattern is sent and will repeat
until the next edge.

The Waveform pattern is a variable length patten (max 40940 = 20 % 2047 or
81880 = 40 * 2047)

10.6.6 Pattern Recycle

Type(s): bool

In waveform mode a trigger cause the output to begin sending the pattern from
its start. When the end of the pattern is reached the output will either go in
active, or begin sending the pattern again, based on this property.

10.6.7 Freq Trig Lvl

Type(s): bool

When in frequency mode and a trigger arrives the output is forced to this level.

10.6.8 Counts High/Low /Init

Type(s): uint32 or double

Stores a value which is the number of counts (uint32) or time (double) of the
high or low part of a square wave.

The number of ticks must be >20 or 40, whichever is the time of one period of
the event clock.

The Counts Init property holds the value which is loaded into the counter when
a trigger arrives. This allows for a phase difference between the output and the
trigger source.

35

10.6.9 Freq Mult

Type(s): uint32

This read only property gives the multiplier for the CML/GTX output clock.
This will be either 20 (CML) or 40 (GTX).

10.7 Input

Properties in this section apply to the Input sub-unit. Input objects are named
$(OBJ):FPIn# where the range of the number # depends on the hardware
model.

See: evrApp/Db/evrin.db
| Property Name | Type(s) | Writeable | I/0 Intr | Notes |

Active Level bool Yes
Active Edge bool Yes
External Mode uint16 Yes
External Code uint32 Yes
Backwards Mode | uintl6 Yes
Backwards Code | uint32 Yes
DBus Mask uint16 Yes

10.7.1 Active Level

Type(s): bool

When operating in level triggered mode, determines if codes are sent when the
input level is low, or high.

10.7.2 Active Edge

Type(s): bool

When operating in edge triggered mode, Determines if codes are sent on the
falling or rising edge in the input signal.

10.7.3 External Mode

Type(s): uint16

Selects the condition, Level (1), Edge (2), or None (0), in which to inject event
codes into the local mapping ram. These codes are treated as codes coming
from the downstream event link.

36

10.7.4 External Code

Type(s): uint32

Sets the code which will be applied to the local mapping ram whenever the
"External Mode’ condition is met.

10.7.5 Backwards Mode

Type(s): uint16

Selects the condition, Level (1), Edge (2), or None (0), in which to send on the
upstream event link.

10.7.6 Backwards Code

Type(s): uint32

Sets the code which will be sent on the upstream event link whenever the "Back-
wards Mode’ condition is met.

10.7.7 DBus Mask

Type(s): uint16

Sets the upstream Distributed Bus bit mask which is driven by this input. DBus
bits from multiple sources are condensed with a bit-wise OR.

10.8 Event Mapping

Properties in this section describe actions which should be taken when an event
code is received.

10.8.1 Pulse Generator Mapping

Special device support acting on pulser generator objects.
See: evrApp/Db/evrpulsermap.db

Causes a received event to trigger a Pulse Generator (Pulser) sub-unit, or force
it into an active (set) or inactive (reset) state.

These records will have DTYP set to "EVR Pulser Mapping".

Each record will cause one event to trigger, set, or reset one Pulse Generator. It
is possible (and likely) that more then one record will interact with each event
code or Pulse Generator. However, each pairing must be unique.

37

record (longout , "(P)(N)$SM)") {

field (DTYP, "EVR_Pulser_Mapping")
field(O , "@OBJ=$%(OBJ):Pul0, _Func=$ (F-Trig)")
field (PINI "YES")
field (DESC "Mapping.for_Pulser_$(PID)")
field (VAL , "$(EVT)")
field (LOPR "o")
field (HOPR, "255")
field (DRVL, "0")
field (DRVH, "255")

}

In this example the event *§(EVT)’ specified in the "VAL’ field will cause function
"$(F)’ on Pulse Generator # '$(PID)’. Current functions are "Trig’, 'Reset’, and
"Set’.

10.8.2 Special Function Mapping

Special device supportacting on global EVR objects.
See: evrApp/Db/evrmap.db

Allows a number of special actions to be mapped to certains events. These
actions include:

Blink An LED on the EVRs front panel will blink when the code is received.

Forward The received code will be immediately retransmits on the upstream
event link.

Stop Log Freeze the circular event log buffer. An CPU interrupt will be raised
which will cause the buffer to be downloaded. This might be a useful action
to map to a fault event.

Log Include this event code in the circular event log.
Heartbeat This event resets the heartbeat timeout timer.
Reset PS Resets the phase of all prescalers.

TS reset Transfers the seconds timestamp from the shift register and zeros the
sub-seconds part.

TS tick When the timestamp source is 'Mapped code’ then any event with this
mapping will cause the sub-seconds part of the timestamp to increment.

Shift 1 Shifts the current value of the seconds timestamp shift register up by
one bit and sets the low bit to 1.

Shift 0 Shifts the current value of the seconds timestamp shift register up by
one bit and sets the low bit to 0.

38

FIFO Bypass the automatic allocation mechanism and always include this code
in the event FIFO.

In the following example the front panel LED on the EVR will blink whenever
event 14 is received.

record (longout , "$(P)map:blink") {
field (DTYP, "EVR_Mapping")

field(O , "@OBJ=$(OBJ) ,_Func=Blink")
field (PINI "YES")

field (VAL , "14")

field (LOPR nom)

field (HOPR, "255")

10.9 Database Events

Special device support acting on global EVR objects.
See: evrApp/Db/evrevent.db

A device support for the ’event’ recordtype is provided which uses the Event
FIFO to record the arrival of certain interesting events. When set to SCAN
'I/0 Intr’ the event record device support will process the record causing the
requested DB event. Supports setting it timestamp from device support (set
TSE to -2).

record (longout , "(P)(N)") {
field (DTYP, "EVR")

field (SCAN, "I/O_Intr")

field (INP , "@OBJ=$ (OBJ) ,_.Code=$ (CODE) ")
field (VAL , "$(EVNT)")

field (TSE , "-2") # from device support
field (FLNK, "(P)(N):count™)

record(calc, "(P)(N):count") {
field (SCAN, "Event")
field (EVNT, "$(EVNT)")
field (CALC, "A}+1")
field (INPA, "(P)(N):count NPP")
field (TSEL, "(P)(N).TIME")

PR,

}

In this example the hardware event code §(CODE)’ will cause the database
event '$(EVNT)’.

Note: that while both ’§(CODE)’ and "$(EVNT)’ are numbers, they need not
be the same. Hardware code 21 can cause DB event 40.

10.10 Data Buffer Rx

Records associated with receiving variable length data messages.

39

10.10.1 Enable

See: evrApp/Db/evrbase.db
Object name $(OBJ):BUFRX
Type(s): bool

Selects Event link data mode. This chooses between DBus only (1) , and
DBus+Buffer (0) modes. In DBus only mode Data Buffer reception is not
possible.

10.10.2 Data Rx

See: evrtMrmApp/Db/mrmevrbufrx.db
Implemented for: waveform

When a buffer with the given Protocol ID is received a copy is placed in this
record. It is possible to have many records receiving the same Protocol ID. Data
is received as a byte array and interpreted according to FTVL. For multi-byte
types the transmission byte order is assumed to be big endian. Data is truncated
to a multiple of the element size.

Many record (or other listeners) may register for the same Protocol ID.

The special Protocol ID 0xff00 may be used to cause a listener to receive mes-
sages destined for any ID.

Note: In order to avoid extra copy overhead this record bypasses the normal
scanning process. It function like “I/O Intr”, however the SCAN field should be
left as “Passive”.

record(waveform , "$(P)dbus:recv:u32")

{
field (DESC, "Recv_Buffer")

(
field (DTYP, '"VRVLEVR_Buf_Rx")
field (INP , "@OBJ=$ (OBJ),_Proto=$ (PROTO) ,_P=Data_Rx")
field (FTVL, "ULONG")

(

field (NELM, "2046")

10.11 Data Buffer Tx

Records associated with sending variable length data messages.

This section is shared between the EVR and EVG.

40

10.11.1 Outgoing Event Data Mode

See: mrmShared/Db/databuftxCtrl.db
Object name $(OBJ):BUFTX
Type(s): bool

Selects Event link data mode. This chooses between DBus only (1), and DBus+Buffer
(0) modes. In DBus only mode Data Buffer transmission is not possible.

10.11.2 Data Tx

Special device support “MRF Data Buf Tx”.
See: mrmShared/Db/databuftx.db

This records sends a block of data with the given Protocol ID. If FTVL specifies
a multi-byte type then data will be converted to big endian byte order for
transmission.

record (waveform , "$(P)dbus:send:u32")
{
field (DESC, "Send Buffer")
field (DTYP, "MRF Data Buf Tx")
field (INP , "@C=$(C), Proto=$(PROTO), P=Data Tx")
field (FTVL, "ULONG")
field (NELM, "2046")

41

	1 System Overview
	1.1 Event Link Data
	1.2 Global Time Distribution

	2 Receiver Functions
	2.1 Pulse Generators
	2.2 Event Mapping Ram
	2.3 Prescalers (Clock Divider)
	2.4 Outputs (TTL)
	2.5 Outputs (CML and GTX)
	2.6 Inputs
	2.7 Global Timestamp Reception
	2.8 Data Buffer Tx/Rx

	3 What is Available?
	3.1 Prerequisites
	3.2 Source

	4 Supported Hardware
	5 IOC Deployment
	5.1 Device names
	5.2 VME64x Device Configuration
	5.3 PCI Device Configuration
	5.4 PCI Setup in Linux
	5.5 Example Databases

	6 Testing Procedures
	6.1 EVG and EVR Checkout
	6.2 Timestamp Test

	7 Firmware Update
	7.1 VME EVRs and EVGs
	7.2 cPCI-EVRTG-300
	7.3 PMC-EVR-230

	8 NTPD Time Source
	9 Implementation Details
	9.1 Event code FIFO Buffer
	9.2 Data Buffer reception
	9.3 Timestamp validation

	10 EVR Device Support Reference
	10.1 Global
	10.2 SFP
	10.3 Pulse Generator
	10.4 Prescaler (Clock Divider)
	10.5 Output (TTL and CML)
	10.6 Output (CML/GTX only)
	10.7 Input
	10.8 Event Mapping
	10.9 Database Events
	10.10 Data Buffer Rx
	10.11 Data Buffer Tx

