Epics device driver for MRF VME-EVG-230

Jayesh Shah, NSLS2, BNL jshah@bnl.gov

Last Updated: September 28, 2011

1 The Source

VCS Checkout

$ git clone https://github.com/epics—modules/mrfioc2.git

Currently the driver only supports VME-EVG-230.

2 10C Deployment

This section outlines a general strategy for adding an VME-EVG to an IOC.

The VME bus based EVGs are configured using the mrmEvgSetupVME() I0C
shell function.

mrmEvgSetupVME (

const char* id, // EVG card ID

epicsInt32 slot, // VME slot

epicsUInt32 vmeAddress, // Desired VME address in A24 space
epicsInt32 irqLevel // IRQ Level

epicsInt32 irqVector, // Desired interrupt vector number

)
mrmEvgSetupVME (EVG1,5 ,0x20000000,3 ,0x26)

In this example EVG1 is defined to be the VME card in slot 5 on VME crate.
It is given the A32 base address of 0x20000000 and configured to interrupt on
level 3 with vector 0x26.

You can look at example startup script(st.cmd file) for EVG in . /mrfioc2/iocBoot /iocevgmrm
directory.

Note: VMEG64x allows for jumpless configuration of the card, but not automat-
ically assignment of resources. Selection of an unused address range and TRQ
level /vector is necessarily left to the user.

Note: Before setup is done the VME64 identifer fields are verified so that
specifying an incorrect slot number is detected and setup will safely abort.

3 CLASSES/SUB-COMPONENT 2

3 Classes/Sub-Component

[Ac Gireut | | Extemal Input | RX | | output |

Event Code DBus

Muitiplexed Counter (8) ’fj
FIFO

Triggers

{_E_)El-lnp_ _: Sequence RAM {2) ‘ | Event Trigger (8) |

TX

Gt
Prionty Encoder | Code

o
2l
i 2
@ i
Backplane
3.1 EVG

3.1.1 Global EVG Options:

e FEnable (bo/bi): EVG enable and disable.

3.1.2 Timestamping

The Event System provides a global timebase to attach timestamps to all col-
lected data and performed actions at EVR. The time stamping system consists
of 32-bit timestamp event counter and a 32-bit seconds counter.

This driver provides you an option of doing timestamping calculations in soft-
ware as compared to the dedicated hardware as used at few places.

Ve VR
: =t 1oRr | 0x70, Ox71 32 bits Seconds =
GRS [k Shift Register
1Hz ¥
Rubidium 1Hz Timestamp 0x7D. 1Hz 32 bits Seconds 32 Bit Timestamp
s Reset Ox7D | Register ") Event Counter

Following are the EVR requirements for accurate timestamping:

e At the start of every second, receive the event code 0x7D which would
load the 32-bit seconds count from shift register into the seconds register
of EVR and reset the timestamp event counter.

e Have the next 32-bit seconds count shifted in the shift register of EVR
before the end of the current second. The shift register is updated se-
rially by loading zeros and ones on receipt of event code 0x70 and 0x71

respectively.

3 CLASSES/SUB-COMPONENT 3

Timestamping at EVG:

For timestamp EVG needs a pulse from the time source at the start of every
second. EVG used this 1 pulse per second input to address both requirements
of EVR timestamping.

e The first requirement is addressed by using Trigger Events of EVG. We
can configure one of the trigger events to send out event code 0x7D when
it receives a pulse from the 1PPS source.

e For addressing second requirement EVG uses software events. When
timestamping starts the EVG driver obtains the current time from epics-
GeneralTime interface(which inturn is synced to a accurate time source)
and stores it locally. Now the driver uses the 1 pulse per second output
from the time source to update the seconds count of the locally stored
time and then sends out next second using event codes 0x70 and 0x71 via
software events.

Driver handles different error scenarios:

e EVG uses timer with 1PPS input signal. If it does not detect the signal in
some ’'1 + delta’ second the timer goes off and it raises an major alarm and
timestamping stops. Once EVG receives the pulse from the 1PPS source
it starts the timer again and if the timer does not go off for 5 consecutive
pulses then the EVG starts sending timestamps again.

e Before sending out the timestamps to EVR (i.e. the 32-bit seconds count),
EVG compares the stored time(updated by 1 PPS) with the current time(obtained
from epicsGeneralTime). If they do not match an minor alarm is raised
but the stored time is sent as the current time to EVR.

Advantages:
e Using minimum number of EVG inputs for the timestamping purpose.
Records associated with EVG time stamping:

e Synchronize Timestamp (bo): Sync the current time with the NTP server.

e 1PPS source for Timestamping:

— Timestamp Input (mbbo/mbbi):

x None : Stop timestamping
x Front : Front Panel Input
x Univ : Universal Input

*

Rear : Rear Transitional Input

3 CLASSES/SUB-COMPONENT 4

3.2 Event Clock

All the operations on EVG are synchronized to the event clock. Which is de-
rived from either externally provided RF clock or from an on-board fractional
synthesizer.

e Source (bo/bi): The event clock may be derived from external RF clock
signal or from an on-board fractional synthesizer.

e RF reference frequency (ao/ai): Set the RF Input frequency in MHz.
Frequency can range from 50 to 1600.

e RF Divider (longout/longin): Divider to derive desired event clock from
RF reference frequency.

e Fractional Synthesizer frequency (ao/ai): This frequency could be used to
derive event clock.

e FEvent Clock Frequency Readback (ai): Gets the current event clock fre-
quency in MHz.

3.3 Software Events

Software event is used to send out an event code by writing that event to a
particular register in EVG.

e FEnable (bo/bi): Enable/Disable the transmission of Software Events.

e FEvent Code (longout/longin): Sends out the event code onto the event
stream. Event code can range form 0 to 255.

3.4 Trigger Events

There are currently 8 trigger event sources. Trigger events are used to send
out event code into the event streams, every time a trigger is received. The
stimulus could be a rising edge on an external input signal or a multiplexed
counter output or the ac signal.

e FEnable (bo/bi): Enable/Disable the transmission of Trigger Events.

e Fuvent Code (longout/longin): Sets the event code to be sent out, whenever
a trigger is received. Event Code can range form 0 to 255.

e Trigger Source (mbbo): The trigger could come from one or multiple
sources. It could come from any of the external inputs and/or any multi-
plexed counter output and/or from ac signal. If multiple trigger sources
are selected then those signal are OR’ed together and the resulting signal
works as the trigger.

3 CLASSES/SUB-COMPONENT 5

3.5 Distributed bus

The distributed bus allows transmission of eight simultaneous signals with the
event clock rate.

e Signal Source/Map (mbbo): The bits of the distributed bus can be driven
by selecting one of the following sources.

— Ext Inp : Sampling of the external input signals at event rate.

— MXC : Sampling of the corresponding multiplexed counter output at
event rate.

— Upstream EVG : Forwarding the state of distributed bus bit of up-
stream EVG.

e Selecting the input (bo): When the source for the distributed bus signals
is external input signal, we need to specify which input signal needs to be
mapped onto the distributed bus. If multiple inputs are mapped onto a
single distributed bus bit then those signals are logically OR’ed together
and the resulting signal is used to drive the distributed bus bit.

3.6 Multiplexed Counter

There are 8 32-bit multiplexed counters that generate clock signals with pro-
grammable frequencies from event clock/2732-1 to event clock/2. The counter
outputs may be programmed to trigger events, drive distributed bus signals and
trigger sequence RAMs.

Polarity (bo/bi): Set the Multiplex Counter(Mxc) output polarity.

Frequency (ao/ai): Request a signal with a particular frequency.

Prescaler (longout/longin): Used as counter to produce a signal with a
particular frequency.

Reset: Reset all the multiplexed counters. After reset all the counters are
in phase/sync with each other.

3.7 Input

VME-EVG-230 has 2 Front panel, 4 Universal and 16 Transitional Inputs.

e External Input Interrupt (bo): Enable or Disable the External Interrupt.
When enabled, an interrupt is received on every rising edge the input
signal.

3 CLASSES/SUB-COMPONENT 6

3.8 Output

It is used to configure the 4 front panel outputs and 4 four front panel universal
outputs.

e Source (mbbo/mbbi): The output could be mapped to

— Any of the eight distributed bus bits
— Forced logic 1
— Forced logic 0.

3.9 AC Trigger

EVG provides synchronization to the mains voltage frequency or another exter-
nal clock.

e Divider (longout/longin): The mains voltage frequency can be divided by
an eight bit programmable divider.

e Phase (ao/ai): The output of the divider may be delayed by 0 to 25.5 ms
by a phase shifter in 0.1ms steps to adjust the triggering position relative
to mains voltage phase.

e AC Bypass (bo/bi): It is set to bypass the AC divider and phase shifter
circuitry.

e Sync (bo/bi): The AC Trigger could be synchronized either with event
clock or the output of multiplexed counter 7.

3.10 Event Sequencer

Event Sequencer provides a method of transmitting or playing back sequences
of events stored in random access memory with defined timing. MRF VME-
EVG-230 has 2 sequenceRams (sequencers or hard sequence). The sequencer
can hold up to 2048 <event code, timeStamp> pair. When the sequencer is
triggered, an internal counter starts counting. When the counter value matches
the timeStamp of the next event, the attached event code is transmitted.

3 CLASSES/SUB-COMPONENT 7

Functional block diagram of device support for
event sequencer

|I | Commit Recc-rdl I,I_I Readback Recordsl

f Enable/DisablefHalt Actions

/

Commit Action

Low Priority |I Scratch Sequence =t

controll
High Priority Software Sequence mr— el
e —— I Complete Sequence

) Sync Action

S5eq pointer
|I HW Sequencer RAM

Device support for sequencer introduces a concept of software sequence(a.k.a.
soft sequence). The existence of the software and hardware sequences is an
abstraction made to separate the process of assembling a sequence from the
process of placing it into hardware. Software sequence maintains a complete
ready to run copy of all sequences in the IOC at all times. The IOC is then
free to choose which sequence to place into hardware. Since this is a local
operation it can be done quickly and efficiently. The IOC can have any number
of these soft sequences but at a time the number of these soft sequences that
can be loaded into the EVG hardware is restricted by the number of hardware
sequences.

Load/Unload Actions

Hardware Sequence

Run Controls

As shown in the picture above IOC maintains 2 copies of sequencer data (i.e.
Event Code’s, Timestamps, Trigger Source and Run Mode). Scratch sequence
and complete sequence. Users are allowed to make changes to the scratch se-
quence directly. Scratch sequence is like the working copy. When user are
satisfied with the changes made to the working copy then they can ’commit’
the soft sequence which will update the complete sequence with the scratch se-
quence. If the software sequence has an assocaited hardware sequence with it
then the complete sequence is copied to the hardware on commit. This is the
Sync operation of sequencer.

Parts of the sequence:
e FEvent Code List (waveform): Tt is used to set the list of the eventCodes of

the soft sequence. These eventCodes are transmitted whenever the timeS-
tamp associated with eventCode matches the counter value of sequencer.

o Timestamp List (waveform): It is used to set the timeStamps for the
events in the soft sequence.

o Timestamp Input Mode(bo): There are two mode to enter the timestamp-
ing data in the sequencer i.e. EGU and TICKS.

3 CLASSES/SUB-COMPONENT 8

— EGU: In EGU mode user can enter the timestamps in units of sec-
onds, milli-seconds, micro-seconds or nano-seconds.

— TICKS: Here user can provide timestamps in terms of Event Clock
ticks.

— All the timestamp values are offset from the time the sequencer re-
ceives the trigger.

e Timestamp Resolution(mbbo) : If the timestamp input mode is EGU user
can use this record to give the units to time.

— Sec - Input/Output sequencer timestamps in seconds

mSec - Input/Output sequencer timestamps in micro-seconds

uSec - Input/Output sequencer timestamps in milli-seconds

nSec - Input/Output sequencer timestamps in nano-seconds

e Run Mode (mbbo/mbbi): Run mode is used determine what will the se-
quencer do at the end of the sequence. where mode could be any of the
following;:

— Single : Disarms the sequencer at the end of the sequence.

— Automatic : Restarts the sequence immediately after the end of the
sequence.

— Normal : At the end of the sequence, the sequencer rearms and waits
for the trigger to restart the sequence.

o Trigger Source (mbbo/mbbi): Trigger Src is used to select the source of
the trigger, which starts the sequencer.

— Mxc : Trigger from MXCO0 - MXC7
— AC : Trigger from AC sync logic
— Software : Trigger from RAMO/RAM1 software trigger.

— External : Trigger is received from any external input.

Above records only deal with the scratch copy of the soft sequence. They do
not directly interact with the hardware sequence.

A soft sequence could be in different states like LOADED or UNLOADED,
COMMITTED or DIRTY, ENABLED or DISABLED.

e Load (bo): If successful, load causes a soft sequence to move from UN-
LOADED state to LOADED state. In the LOADED state, an hard se-
quence is assigned to a soft sequence. If the soft sequence is already in
LOADED state then load will return with an error message. The opera-
tion will fail if all the hard sequences are already assigned. An allocation
scheme ensures that at any given time, each hard sequence is connected
to only one soft sequence. Load also copies the last committed data to
the hardware.

3 CLASSES/SUB-COMPONENT 9

e Unload (bo): The unload causes the soft sequence to enter into UN-
LOADED state. This operation cannot fail. In unloaded state the as-
signment of a hard sequence to a soft sequence is released.

e Commit (bo): Whenever you modify a soft sequence, the scratch copy in
the soft sequence is modified (Refer to evg-seq diagram). Commit causes
the changes from the ’scratch sequence’ to be copied to the ’complete
sequence’. If the soft sequence is loaded, commit also initiates sync op-
eration and copies the changes from complete sequence to the hardware.
Modifying the sequenceRam while it is running gives undefined behavior
hence 'commit’ makes sure that the changes are not written to the hard-
ware while it is running. Hence it waits for the current sequence to finish
before writing to the hardware sequence.

e Enable (bo): It puts the soft sequence in the ENABLED state. In enabled
state, a loaded sequence is armed and waits for the trigger. If is already
in ENABLED state the record does nothing.

e Disable (bo): In DISABLED state the armed sequence is disarmed, so
even if the sequencer receives the trigger the sequence is does not run
again.

e Pause (bo): This stops the currently running sequence(if any) and then
disarms it. Pause leaves the sequence in DISABLED state. When the
sequence starts running again(Arm + Trigger), it continues the from where
it was stopped.

e Abort (bo): This causes the currently running sequence(if any) to stop
and then disarmed. Abort leaves the sequence in DISABLED state. After
disarming it also resets the timestamp and eventCode registers. So when
the sequence starts running again(Arm + Trigger), it continues the from
the start.

Caveats for sequencer

e In the Event Code and Timestamp arrays provided by user are of different
lengths then the length of the sequence would be the length of the smaller
of the two arrays. The remaining extra elements of the longer array would
be ignored.

e Driver by defaults puts the ’End of Sequence (0x7f)’ event code at the
end of the sequence and it will be sent ’evgEndOfSeqBuf’ event clock tick
after the last event in the sequence has been sent out. Which currently
defaults to five event clock ticks. If user provides 0x7f with a timestamp
then that would be used instead of the default one.

o If a soft sequence is uncommitted and running then when the IOC restarts
the sequence would be in uncommitted state but wont be running i.e. last
committed sequence is lost.

PyQt script. (Front end for Event Code and Timestamp arrays)

4 ACKNOWLEDGMENT 10

e You need to install PyQt4 to run this python script. Debian package is
pyqt4-dev-tools.

e You can have timestamp as ’zero’ for the first event code in the sequencer.
So this will allow the first event code in the sequencer to be sent out
immediately after sequencer receives the trigger. But adding ’'zero’ as
timestamp anywhere else(other than for first event code) is an error and
the sequence would be truncated as soon as a zero is encountered. e.g.
timestamp array: 0x20, 0x30, 0, 0x40 would be truncated to 0x20, 0x30.
(Just first two elements before zero.)

4 Acknowledgment

Thanks for all the help and support

e Micheal Davidsaver, NSLS2, BNL.
e FEric Bjorklund, LANSCE, LANL.

