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Based on personal experience with accelerator operation and maintenance, the author

felt a deep need for remote operation of accelerators in a variety of situations. Currently,

enormous projects, such as the International Linear Collider (ILC), will be launched as

a result of the collaborative effort of multiple institutes. After the ILC’s collaborative

commencement, all associates, except for the host country, will need to have methods

for remote maintenance, control, and monitoring of associated devices via Wide Area

Network (WAN) links. For example, a method has to be provided for connecting to the

control system network via WAN links from various collaborating institutions. Such re-

mote operation needs to implement components that have concepts different from those

of daily operation, for example, communication, man-machine user interface (UI), and

system security. On the other hand, systems for remote operation have been devel-

oped by research organizations. Almost all such systems are allocated enough system

resources.

As described above, remote operation is necessary in many situations. However, it is

not always possible to use environments with rich system resources, such as dedicated

networks, for remote operation. Therefore, in this study, methods regarding UI and

system security are discussed for remote operation with limited system resources, such

as low-band width networks.

Considering operator interface (OPI) for remote operation, the use of standard pro-

tocols, such as Hypertext Transfer Protocol (HTTP), has certain advantages because

system-dependent protocols are not necessary between remote clients and on-site servers.
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On the other hand, Web services that provide a UI component to accelerator control

systems have been utilized for various purposes already because such services possess

the advantages of being platform-independent systems, providing software maintenance,

and can be developed rapidly.

In this study, the author develops a client system based on WebSocket as a next-

generation OPI over the Web using Experimental Physics and Industrial Control System

(EPICS) Channel Access (CA); WebSocket is a new protocol provided by the Internet

Engineering Task Force (IETF) for Web-based systems. In order to construct a Web-

Socket server as an EPICS CA client, add-on software for Node.js, called Node-CA, was

developed by the author in C/C++ using the EPICS CA library, which is included in

the EPICS base. As a result of this implementation, WebSocket-based client systems

have become available for remote operation using EPICS in wide area environments.

In addition, from a practical application standpoint, the remote operation of an accel-

erator via WAN is beset by a number of issues. One such issue is that the accelerator has

both experimental device and radiation generator characteristics. Therefore, any error

in the operation of the remote control system could result in an immediate breakdown.

For these reasons, the author proposes the implementation of an operator intervention

system for remote accelerator diagnostics and support that can obviate any divergences

between the local control room and remote locations.

The purpose of the proposed operator intervention system is to ensure safe remote

output control of EPICS via the WebSocket server. To simply monitor the status of

the accelerator parameters using the WebSocket-based OPI, permission from the on-site

operator is not necessary, provided that authentication has been accomplished through

a Secure Sockets Layer (SSL) connection. The WebSocket-based client system is de-

signed such that output control via remote operation always requires the permission

of an on-site accelerator operator who can intervene at any time. The main part of

the proposed operator intervention system consists of a Process Variable (PV) gateway

provided by EPICS collaboration, a MySQL database, and Web applications. After the

implementation, the on-site accelerator operator can determine the availability of the

equipment, and decide whether to grant operation requests from remote users.

Finally, the system that combines WebSocket-based OPI and an operator intervention

system is implemented for the 28 GHz superconducting electron cyclotron resonance ion

source (28GHz SC-ECRIS), which is one of the components in the RIKEN Radioisotope

(RI) Beam Factory project, for verification of usefulness. Using this system, the author

confirmed that the output instructions did not reach the EPICS IOC without the on-site

operator’s permission. In addition, remote operation was performed satisfactorily with

a network latency of 200 ms, which is approximately the same network latency between
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Japan and the USA. Therefore, networking performance tolerance should allow this sys-

tem to be used over networks provided by almost all Japanese Internet service providers.

Because the system is implemented with RIKEN 28 GHz SC-ECRIS remote operation,

the author confirmed that this new operator intervention system via WebSocket-based

OPIs is a useful method for ensuring the physical security of operational errors.
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Chapter 1

Introduction

1.1 Remote Operation for Large Experimental Physics Fa-

cility

Based on an experience with accelerator operation and maintenance, the author felt a

deep need for remote operation in a variety of situations. In control system technology,

there have been several studies and attempts at implementing such remote operation.

Through reference to previous works and his own consideration, the author organized

required features in remote operation. Based on the results of a survey, components

with features that are essential to remote operation were implemented through in-depth

technical considerations.

In large experimental physics facilities, such as accelerator facilities or telescope facili-

ties, control systems are operated using applications such as user interfaces (UIs) from a

control room. In general, control rooms are located approximately less than 10 km from

control systems; in fact, in some accelerator facilities, the control room is located near

the accelerator room. On the other hand, for the maintenance of various equipment,

to perform collaborative physics measurements on different machines, and for several

other reasons, some users demand the ability to conduct remote operations from dis-

tant locations, such as out of state, far from the control room. By utilizing modern

control systems with high-performance networks, control system engineers have fulfilled

the demands of some of the features of remote operation.

As part of the history of remote operation, previous studies are described in detail in

the next section.

1
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1.2 International Linear Collider

The International Linear Collider (ILC), which is the next generation accelerator

project, will be launched as a result of the collaborative efforts of multiple institutes

from three regions. The ILC required collaborative effort because the size and cost of

future large experimental physics projects planned for this collider exceed the resources

of a single region. Even if the development of this accelerator will be divided into

several parts, and technology development will be pushed forward cooperatively, research

organization will bear responsibility for the project, depending on the development.

Once collaboration has begun, all participating organizations, with the exception of

the host country, must provide methods for remote maintenance, control, and moni-

toring of their associated devices, because such will be their responsibility. To realize

joint-management of the project from outside the control network, some type of system

implementation for remote operation will be required.

For this purpose, implementation of the global accelerator network (GAN) [1] has been

planned since March 2000 as a dedicated control system for huge project, such as the

ILC control system.

1.2.1 Global Accelerator Network

The idea underlying GAN is the construction of remote accelerator control rooms that,

in terms of performance and feature, are virtually equivalent to the local control room,

and can be utilized by remote users of the facility. The technical challenge will more than

likely be presented by the middle layer software (middleware) that is responsible for the

system integration, automation, and presentation of the machine state to the accelerator

operator. For GAN study, LabVIEW (produced by National Instruments) was used as

an example of the type of high-level graphical programming tool that was available for

hardware control and integration at Deutsches Elektronen-Synchrotron (German Elec-

tron Synchrotron - DESY) in 2001 [2]. To construct a comparatively small-scale control

system, LabVIEW is widely used because of its advantage in software usability, and

the richness of its supported low-level drivers. In the system employed at DESY, the

integration system that uses LabVIEW-based applications can successfully connect to

hardware-dependent protocols and to the remote procedure call (RPC) protocol [3].
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1.2.2 GANMVL scenario

In May 2005, a system similar to GAN, the Global Accelerator Network Multipur-

pose Virtual Laboratory (GANMVL), was implemented for the European Design Study

towards a Global TeV Linear Collider (EUROTeV) project [4]. GANMVL facilitates

remote operation using a client system that utilizes X11 Windowing, virtual network

computing (VNC), and JAVA VNC [5]. However, these communication methods can en-

counter issues such as low bandwidth and high network latency during remote operation

over wide area links. Thus, with the limited network resources present in some areas,

if the communication methods described in the previous paragraph are used, stable

operation and control of the accelerator might prove difficult.

1.3 History of Remote Experiment Systems

The technology for remote monitoring already exists with most modern control systems,

and remote operation is generally available with security restrictions from individual

institutions. In this section, the author will provide examples of remote operation of

accelerator experiments.

1.3.1 Compact Muon Solenoid (CMS) Experiment

Remote operation for this and other experiments that require the Large Hadron Col-

lider (LHC) is achieved through the use of control systems. The researchers in charge

of the Compact Muon Solenoid (CMS) experiment built on the LHC located at the

European Organization for Nuclear Research (CERN) in Switzerland, and planned to

install a virtual control room at the Fermi National Accelerator Laboratory (Fermilab)

located just outside Batavia, Illinois [6]. The CMS researchers based at both Fermilab

and CERN have been working closely in the areas of data acquisition, triggers, data

monitoring, data transfer, software analysis, and database access, in order to commis-

sion sub-detectors with the common goal of obtaining efficient and high-quality data for

physics study. CMS heavily relies on an online, Web-based monitoring (WBM) system

that is composed of the Apache Tomcat [7] Web server and the ROOT [8] data display

package. From June through September 2006, the test beam results obtained from the

CMS experiment were made available for online monitoring by anyone via the Web and

the Internet [9].
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1.3.2 A Toroidal LHC ApparatuS (ATLAS) Experiment

For the ATLAS experiment for the LHC, a remote system was implemented, as is the

case with the CMS experiment described previously [10]. By using the remote monitor-

ing rooms located at American ATLAS institutions for ATLAS experiment, communi-

cation ability among American ATLAS members and scientists at CERN was increased.

ATLAS Data Acquisition (DAQ) system can share the information in wide fields, for ex-

ample of synchronization between processes, error reporting, and operational or physics

event monitoring.

1.3.3 Photon Factory (PF) Experiment at KEK

For the Photon Factory (PF) experiment at the High Energy Accelerator Research

Organization (KEK) in Japan, a special new beamline equipped with facilities to enable

a videoconference system, and in some cases, remote operation, was planned by creating

a new “collaboratory” research network [11]. One of the purposes of the collaboratory

research network is to establish a system that allows KEK equipment users to collect data

from their experiments using remote operation. For this collaborative network, a secure

virtual local area network (VLAN) with authentication of public key infrastructures

is used to connect the computer network between KEK, Tohoku University, Okazaki

National Research Institutes, and Kyoto University [12]. Using Microsoft Windows

Remote Assistance, remote users can share graphical UIs (GUIs) for the control system

located on site [13].

1.3.4 Remote Experiment System at SPring-8

The wide-area remote experiment system (WRES) was developed for safe experimen-

tation through remote operation at SPring-8, a synchrotron radiation facility located

in Japan [14]. Considering issues of safety for remote experiments, WRES must ensure

radiation safety, human physical safety, and network access security. To ensure human

physical safety during remote operation of the equipment, the physical state of the ra-

diation shield hutch in the experimental equipment is triggered as an “operation-enable

signal” of the interlock system. The first experiment that used WRES was successfully

performed from the RIKEN Wako campus, which is located 480 km away from SPring-8,

in October 2010 [15].
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1.4 Motivation

To clarify the features required for remote operation, this study is compared to the

systems described in Section 1.2 and 1.3. As a result of such previous works, remote

operation needs to implement components with a concept different from that of daily

operation. Such components are network, middleware, communication, man-machine

UI, and system security. For implementation of the remote operation in this study, the

system design for these components is discussed based on the ideas and reference of

previous work. In this section, the components that are required for remote operation

are described in more depth.

1.4.1 Network

For implementation of WRES at SPring-8, the Japanese academic Internet backbone

with a bandwidth of 40 Gbps was used between the experimental equipment at SPring-8

and remote users at the RIKEN Wako campus. Such Internet bandwidth proved to be

sufficient.

As a practical proposition, the GANMVL project and the collaboratory project used

the technology of Virtual Private Networks (VPNs) over Wide Area Networks (WANs)

to enable the connection between remote users and on-site accelerator control systems,

because a dedicated line network would be prohibitively expensive. As a result, VPNs

are effectively utilized as standardized application protocols in the remote operation

of control systems. Therefore, VPN needs to be used for construction of the system

environment in this study as well as other remote operation project. On the other hand,

network latency for remote operation from far place, such as between Japan and United

States, is a issue to consider in this study.

1.4.2 Middleware

Modern accelerator control systems have been designed with middleware between hard-

ware devices and client systems in order to integrate hardware-dependent protocols as

viewed from the client side. It is possible to improve the efficiency of software devel-

opment by implementing middleware. For example, in the case of the Experimental

Physics and Industrial Control System (EPICS – one of the major software systems for

the construction of modern control systems), the EPICS input/output controller (IOC),

which is a server that functions as middleware, converts hardware-dependent protocols

to Channel Access (CA) protocol.
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As shown by EPICS, the solution to the technical problem of integrating GAN-like

control systems is already available, and can be implemented without much difficulty.

For this reason, EPICS is adopted as software for the middleware environment in this

study. The middleware features for accelerator control systems are described in Section

2.1.2 in detail.

1.4.3 Human Communication

The sample projects described previously use electronic log notebooks as one of the

communication tools employed in the remote operation of control systems. In addition,

videoconference systems have been implemented for most remote operation projects in

order to facilitate communication between remote users and on-site staff.

In the case of WRES, remote users can view the status of samples on the on-site

experiment room using a video-streaming system. As can be intuitively deduced, a

communication tool for on-site staff is an essential feature in the remote operation of

control systems; therefore, different types of video systems are frequently installed for

remote operation projects.

On the other hand, human communication between on-site operators and remote users

is also important from a system security point of view because lack of communication

can cause accidents. In addition, Voice over Internet Protocol (VoIP) technology, such

as Skype [16], may play important role. In general, such VoIP-based communication

tools require sufficient network resources.

1.4.4 Man-machine User Interface

For man-machine UIs, any system that interfaces with a GAN project should avoid

dependence on specific platforms employed by GAN projects. The design of a user-

friendly UI is essential to ensure the smooth operation of a remote accelerator. Consid-

ering operator interfaces (OPIs), there are two main types of methods.

In the first method, OPIs are run on the remote client system by sending messages

to on-site servers based on dedicated protocols (method A). Such a method is a general

desktop application. The second method exports GUIs to the remote computer using

systems such as the X Window System, Web technologies, and VNC (method B). In

this method, OPI systems use standard protocols to connect the local system (where

the collaborating researchers are located) to the remote computer (where the remote

accelerator is located), such that the client applications run on the on-site servers. (See

Fig. 1.1)
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Figure 1.1: Comparison of connection methods in client applications during remote
operation.

There are arguments in favor of the two methods described in the previous paragraphs,

and a mixture of methods is possible. However, in the case of remote operation of

control systems, the use of standard protocols has advantages because system-dependent

protocols are not necessary between the remote client and the on-site server. In most

cases, specialized system-dependent protocols cannot connect through gateways over the

Internet.

For the remote operation of GAN projects, the OPI systems are implemented using

traditional methods, such as remote desktop technology. However, these traditional

systems might not operate well over the Internet with low-bandwidth networks. Because

remote desktop technology, such as the X Window System or VNC, is used from the local

computer to remote control desktop environments that can include a Window Manager,

a large amount of network resources might be required. Consequently, the availability

of Web technology for OPIs would be a far more useful method for the remote operation

of control systems in low-bandwidth networks, in comparison to remote operation that

relies on remote desktop technology.

However, ergonomic interactivity should be ensured for beam operation. In reality,

traditional Web applications are not suitable for the operation of the accelerator main

parameters, such as Radio Frequency (RF) and magnet power supplies. Thus, Web-

Socket, a new protocol, is used with EPICS-based control systems in order to utilize

Web technology, such as OPIs, in this study.
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1.4.5 System Security

For the remote operation of control systems, certain security systems must be consid-

ered. From a practical application perspective, the remote operation of an accelerator

via WAN is beset by a number of issues. System security, privacy, interruptions, and net-

work policies are important factors that must be considered in any project that requires

the remote operation of control systems.

The term “system security” includes computer security, as well as the safety of systems,

for example, machine protection, human protection, and human error prevention. Fur-

thermore, communication between on-site operators and remote users is closely related

to system safety for the following reasons:

1. An accelerator has both experimental devices and radiation generator character-

istics.

2. An operation error during beam tuning can cause the generation of excessive ra-

diation.

3. Radiation generators can legally be operated remotely from an external location;

however, there are ethical concerns regarding radiation.

4. Generally, an accelerator control system and a system for radiation safety control

are different systems and are separate from each other; therefore, radiation data

might not always be shared with the accelerator control system.

5. All information regarding a facility, including radiation information, can be ob-

tained from accelerator operators in their local control room.

In the case of WRES at SPring-8, the physical status of the radiation shield hutch is

used as a signal to trigger the interlocking system of the X-ray beam. On the other hand,

researchers for the GANMVL project concluded that a safety system was not necessary

to monitor their control system via remote access from the outside. Note that a safety

mechanism is indispensable when the remote operation of control systems must monitor

the parameters of the experiment being performed, and to control the resulting output.

In addition, any errors in the operation of remote control systems could result in

immediate equipment breakdown, and might cause serious problems with human pro-

tection without enough communication. To prevent operational errors, the accelerator

conditions must be completely understood by all project participants, particularly by

the on-site operators. Therefore, the author approaches this issue using interposition of

on-site accelerator operators, who can confirm safety conditions.
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1.5 Tasks of the Study

As shown in Section 1.4, the components to be improved for remote operation are

the man-machine UI, human communication, and system security. In previous studies,

remote control systems have been constructed with an environment based on sufficient

computer resources. In this thesis, a computer resource means a network-band width

and a dedicated client system. On the other hand, this study aims to implement remote

operation in environments with limited computer resources. Therefore, VoIP-based com-

munication tools (described in Section 1.4.3) that require more network resources are

not covered in this study.

The objective of previous studies and this study for remote operation are summarized

in Table 1.1. The tasks for this study include the possibility of controlling a part of the

accelerator components and to troubleshoot, even with limited computer resources. In

order to manage the tasks, the author believes that use of Web technology is the first

candidate.

For CMS For AT-
LAS

Collaboratry GANMVL WRES This Study

Facility Experiment Experiment Experiment Accelerator Experiment Accelerator
System
Purpose

Data mon-
itoring,
mainte-
nance,
and data
analysis

Data mon-
itoring and
data anal-
ysis

Remote Ex-
periment

Remote
Accelerator
Control
Room

Remote
Experi-
ment

Troubleshooting
and part of
accelerator
control

Needs of
Control
Output

No No Yes Yes Yes Yes

Required
System
Resource

Many Many Many Huge Many Few

Physical
Security
Policy

None None None Plan Only Use of
Interlock
System
for Exper-
imental
hutch

Operator
Interven-
tion System

Table 1.1: To clarify the study’s tasks, a comparison between previous studies and
this study.

From the perspective of software usability, Web technology will be one of the most

useful methods for accelerator control systems. This is because Web-based electronic

log notebooks and JAVA VNC, which is run from a Web browser, have already been im-

plemented to improve the operability of previous remote operation projects. If OPIs are

coded entirely with HyperText Markup Language (HTML) and JavaScript without the
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use of any remote desktop technology, the system that remotely operates the accelerator

will also have the advantages of Web technology in the remote operation.

Currently, Asynchronous JavaScript and XML (AJAX) technology is widely used for

interactive Web applications, such as Facebook [17] and Google [18]. An AJAX-based

OPI has sufficient functions to monitor numerical values using the Internet, and it can

be used if fast interactive responses are not required. However, when a project requires

remote monitoring of an accelerator in addition to remote operation of said accelerator

with a request for output, it is not realistic to replace GUI-based OPI with Web-based

systems that use AJAX technology, because AJAX technology lacks interactive perfor-

mance.

To improve the interactive performance of OPIs using the Web, new technology in

accelerator operation must be used to maintain the usability of Web technology. For this

reason, and as a next-generation OPI over the Web that uses the EPICS CA protocol, the

author proposes a client system based on WebSocket, which is a new protocol provided

by the Internet Engineering Task Force (IETF) for Web-based systems. WebSocket is

Web technology that provides bi-directional, full-duplex communication channels over a

single transmission control protocol (TCP) connection.

Thus, the goals of this study are an examination of the effect of WebSocket-based OPIs

and the implementation of WebSocket-based OPIs in accelerator control systems based

on EPICS, without losing Web usability and with limited computer resources.

In addition, the security issue must be solved if full-scale use of WebSocket-based OPIs

is to become a useful method in the remote operation of control systems. In particular, it

is necessary to have exhaustive discussions for system security in remote operation with

output controls. In order to implement safe remote operation, smooth communication

with on-site accelerator operators and physical intervention are required.

To improve the security of remote operations, on-site accelerator operators must know

all the information regarding the devices that are controlled by remote operation. At

the same time, on-site accelerator operators must be able to decide the availability of

remote operation with output devices. In this study, the security of full-scale remote

control of accelerators via the Internet is improved, and the usability of such remote

control is evaluated.
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1.6 Composition of the Thesis

In this chapter, the history of remote operation in other facilities was described. Then,

the background of this study was presented. In addition, the composition of the thesis

is presented. In Chapter 2, modern accelerator control systems and the standard model

are reviewed as a prerequisite for this study; moreover, the detailed features of the con-

trol software are described. In particular, the author further explains the function and

benefits of EPICS. In Chapter 3, the detailed effects and advantages of implementing

the Web-based system for accelerator operation is described. Because Web systems have

many advantages, they have been applied already for various uses in the operation of

accelerators. In view of previous work, this chapter also clarifies the impact of Web-

based systems on accelerator control systems. In Chapter 4, the detailed architecture of

the WebSocket protocol and WebSocket-based system implementation are described. In

addition, because the author designed the WebSocket server to interface to the EPICS

CA protocol, the system software architecture and the implementation of WebSocket-

based OPIs as higher-level application programs for remote operation is described. In

this WebSocket-based system, its function and features are also reported. In Chapter 5,

system security for remote operation is discussed. For the security system, the software

architecture as a technical premise in the EPICS-based system is described. Because

physical interposition was necessary as a safety net for remote operation, the required

system and the system design are described in detail. In Chapter 6, system implemen-

tation of the WebSocket-based OPIs powered by the security system is described. The

author implemented both systems for 28 GHz superconducting electron cyclotron reso-

nance ion source (SC-ECRIS) at the RIKEN Radioactive Isotope Beam Factory (RIBF)

project. By utilizing a virtual Internet environment using a WAN emulator, this imple-

mented system is tested in a situation similar to remote operation. In Chapter 7, a more

general analysis is shown by discussing the methodology of the system design. Several

guidelines to design the control system are presented. In Chapter 8, a summary of this

thesis is described.



Chapter 2

Modern Accelerator Control

System

In the past, systems based on minicomputers were used to manage and operate ac-

celerator control systems. In the last 30 years, Ethernet has evolved greatly and has

become extremely popular, not only at home or the office, but also in the industrial

field. The standard model, which has a three-layer structure for control systems, is

used widely as the hardware and network standard. Once the standard is established,

efficient software can be developed. In addition, the operation of particle accelerators

requires high-performance electronics for beam diagnostics, data acquisition, and ma-

chine control. For all the aforementioned reasons, the following control frameworks were

developed based on the standard model: EPICS, Distributed Object Oriented Control

System (DOOCS), Message And Database Oriented Control Architecture (MADOCA),

and TAco Next Generation Objects (TANGO).

2.1 Standard Model of the Control System

2.1.1 Previous Control System

In general, large accelerator facilities possess long lifespans, and improvements in the

performance of accelerators are always demanded, even after accelerators become fully

functional. Therefore, control systems must have the flexibility to expand a variety

of functions. In the 1980s, the Transposable Ring Intersecting Storage Accelerator in

Nippon (TRISTAN) control system, which is an electron-positron colliding beam facility

located at KEK, adopted a distributed computer control system using approximately

12
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twenty 16-bit minicomputers [19]. These computers are linked together by optical fiber

cables to form an N-to-N, token-passing ring network. (See Fig. 2.1)

Figure 2.1: Schematic layout of the TRISTAN control system. (Ref. Computing
in Accelerator Design and Operation Lecture Notes in Physics Volume 215, 1984, pp

367-371, Fig. 1)

Around the same time, the RIKEN Accelerator Research Facility (RARF) control

system consisted of three MELCOM 350-60/500s, which is a 32-bit industrial computer

made by Mitsubishi Electric Corp. The RARF control system also included Computer

Automated Measurement and Control (CAMAC) crate controllers and in-house single

board computers [20]. By using optical fibers, a token-ring type computer network that

consists of distributed minicomputers was adopted. In the RARF control system, almost

all operations are performed using touch panels. The block diagram of the control system

is shown in Fig. 2.2.

On the other hand, the control system of the Stanford Linear Collider (SLC) is based

on two DEC VAX systems, distributed microprocessor clusters, and CAMAC crate con-

trollers on direct memory access (DMA) that uses a broadband (5—300 MHz) cable TV

system [21]. As described in previous examples, minicomputers were the conventional

method employed for accelerator control systems 30 years ago; on the other, the unique

development of front-end controllers, hardware, and software were also adopted.
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Figure 2.2: Block diagram of RARF control system.(Ref. JAPANESE JOURNAL
OF APPLIED PHYSICS, vol.30, No.11A, November, 1991, pp.2947–2955, Fig. 2)

In the 1990s, accelerator control systems adopted a combination of standard network

(TCP/IP, fiber-distributed data interface, Ethernet) and VME-based front-end con-

trollers because standardized networks and hardware were available. In addition, the X

Window System available on UNIX has been widely used as an environment for OPI. On

the other hand, the PC-based control system framework with a two-layer structure (one

for the human UI and the other for the device interface), called the Component Oriented

Accelerator Control Kernel (COACK), was devised by KEK in 1999 [22]. However, the

standard model with a three-layer structure is widely used as the modern accelerator

control system because of its advantages in software reusability, flexibility, and reliability

for distributed control systems.

2.1.2 Developing Control System based on Standard Model

The design concept for control systems was the use of de facto standards such as UNIX,

VME, TCP/IP, and the use of optical Ethernet/IP networks for all device controllers

without any special fields [21]. The standard model is composed of the following three

layers: presentation, equipment control, and device interface. (See Fig. 2.3) At the

presentation layer (for example, the man-machine interface), workstations are used to

develop and run application programs for accelerator operations. This layer also in-

cludes a high-speed reliable network. The Input/Output controllers, which are located
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within the equipment control layer, are connected to physical hardware through the de-

vice interface layer based on various types of field busses. By establishing the standard

model, the research purpose of control systems is shifting from the fundamental control

system design to methods that can share the results of software and hardware for the

construction of control systems. For this reason, several control system frameworks,

such as EPICS, have been developed using the standard model. The goal of the con-

trol system frameworks is to provide the accelerator mechanism as a tool with which

to control processing with flexibility and higher reliability. The main framework for the

construction of accelerator control systems that is currently being used is introduced in

the next section.

Figure 2.3: Outline of standard model for control system.
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2.2 Control System Framework

2.2.1 EPICS

EPICS is major control system toolkit that was initially developed by Los Alamos

National Laboratory (LANL) and Argonne National Laboratory (ANL) for the con-

struction of control systems [23]. Currently, the development of EPICS is progressing at

several research institutions, such as DESY, Oak Ridge National Laboratory (ORNL),

and KEK, in addition to ANL and LANL, as an international joint development project

called EPICS collaboration. In order to integrate hardware-dependent protocols in the

EPICS-based control system, the EPICS Input/Output Controller (IOC), which is a

server middleware that functions as the equipment control layer in the standard model,

is implemented.

Given that the subject of the research in this thesis is an EPICS-based control system,

the EPICS architecture will be described in detail in Section 2.4.

2.2.2 DOOCS

DOOCS is a distributed control system that was developed for the Hadron Electron

Ring Facility (HERA) and the Tera Electron Volt Energy Superconducting Liner Col-

lider (TESLA) Test Facility applications at DESY [24]. DOOCS is an object-oriented

system designed from the device server for integration of front-end controllers to oper-

ator consoles. The Equipment Name Server (ENS) consists of a central database that

contains all the names and protocols in the system. In addition, ENS is consulted by

client programs before initial data transfer to a device . The DOOCS system architec-

ture is shown in Fig. 2.4. Communication separates client programs completely from

device servers.

2.2.3 MADOCA

MADOCA was developed at SPring-8 in 1995, and has been successfully utilized at

SPring-8 and other facilities, such as HiSOR, NewSUBARU, and SACLA for the control

of accelerator, beam line, and data acquisition system in experiments [25]. The overview

of the MADOCA-based control system is shown in Fig. 2.5. The control command

to the device from the high-level layer application is utilized by sending a message

that is formatted in a human-readable format called SVOC. Currently, MADOCA2, the

successor system to the MADOCA system, has been developed [26].
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Figure 2.4: Outline of the control system using DOOCS.
(Ref. http://tesla.desy.de/doocs)

Figure 2.5: Overview of the MADOCA-based control system at SPring-8.
(Ref. http://www.spring8.or.jp/ja/facilities/control_system/madoca)
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2.2.4 TANGO

TANGO is a control system based on the Common Object Request Broker Architec-

ture (CORBA), and it was developed by the European Synchrotron Radiation Facility

(ESRF) and Soleil synchrotrons in France [27, 28]. The TANGO system is used for the

construction of a computing tool dedicated to the implementation of distributed, hetero-

geneous, and control/command oriented systems (See Fig. 2.6). CORBA is a definition

for writing object request brokers (ORB). By using TANGO based on CORBA, a given

device is connected as an object via a software bus, and the control actions are executed

by invoking methods on objects over ORB. In recent years, a feature to bridge EPICS

and TANGO has been implemented [29].

Figure 2.6: Overview of TANGO-based control system at Soleil synchrotrons.
(Ref. http://www.synchrotron-soleil.fr/)
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2.3 Front-end Controller and Device Interface

Computer controls that connect to devices and are located within proximate distance

to the device are called front-end controllers. Front-end controllers communicate with

control system frameworks via the device interface. Recently, various types of network-

based controller that use TCP/IP as the device interface are widely used for control

systems [30]. In general, asynchronous access is required for device interface software

in this case, because TCP/IP access is a slow line compared with field busses such as

VMEbus. For this purpose, the device support software with asynchronous access has

been provided in the case of EPICS-based systems [31, 32].

2.3.1 VME

VMEbus is a type of computer architecture. The term was first coined in 1980 by the

group of manufacturers who defined it. Data transfer between modules and the CPU

occurs via the VMEbus. One of the features of the VME-based controller is acceptable

real-time performance. Almost all VME CPU modules support vxWorks as the operating

system (OS). On the other hand, Windows and Linux are also available to run on the

CPU in several cases, for example, the Intel-based (x86) VME CPU module. In the

case of the RIBF control system, VME-based controllers are used to control the power

supply in electric magnets [33]. (See Fig. 2.7)

2.3.2 cPCI

Compact Peripheral Component Interconnected (cPCI) is a standard bus specification

for next-generation industrial computers that has been standardized by the PCI Indus-

trial Computer Manufacturers Group (PICMG). cPCIs are dedicated for fast communi-

cation busses and high-performance applications. For example, cPCI is used successfully

for low-level radio frequency control (LLRF) for the Linear Accelerator (LINAC) in the

J-PARC Main Ring injector [34, 35] and for the Korea Superconducting Tokamak Ad-

vanced Research (KSTAR) control system [36].

2.3.3 PLC

A Programmable Logic Controller (PLC) (Fig. 2.8) is a digital computer used for the

automation of electromechanical processes, such as the control of machinery on factory

assembly lines, or the elevator. PLCs are used in many industries and machines. Unlike
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Figure 2.7: VME-based front-end controller for magnet power supplies at RIKEN
RIBF. The module installed on the left side is VME CPU.

general-purpose computers, PLCs are designed for multiple inputs and output arrange-

ments, extended temperature ranges, immunity to electrical noise, and resistance to vi-

bration and impact. Generally, a development environment called the ladder language is

utilized for the development of sequence controls with PLC. PLCs for KEKB, the Japan

Proton Accelerator Research Complex (J-PARC), and the RIBF control system, espe-

cially the FA-M3 PLC produced by the Yokogawa electronic corporation, are adopted as

front-end controllers in many situations [37]. Use of the Embedded EPICS technology,

in which EPICS IOC is run inside a PLC CPU module without ladder programming, is

widespread in many cases [38–44].

2.3.4 microTCA

Micro Telecommunications Computing Architecture (microTCA) and Advanced TCA

provide a means for the telecommunications equipment market to take advantage of stan-

dardized systems. Recently, microTCA was adopted by DESY and the SuperKEKB as

the next project for the KEKB LLRF control system, as well as for the telecommuni-

cations system [45, 46]. In order to achieve higher stability for better beam quality for

Super KEKB, fast digital feedback or feed-forward mechanisms are utilized on LLRF
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Figure 2.8: PLC based on Yokogawa FA-M3 under construction at RIKEN Nishina
Center. Two units are connected to each other via FA LINK modules.

through a microTCA module that uses field-programmable gate arrays (FPGAs). There

are several advantages for combining microTCA and EPICS. The EPICS IOC can be

run inside microTCA platforms as an Embedded EPICS technology; that is, the CA

protocol is communicated on the microTCA backplane as a hardware bus. Therefore,

system-dependent communication can be managed effectively in a unified manner with

the CA protocol [47]. The picture of microTCA, which is installed for the LLRF of the

Super KEKB project, is shown in Fig. 2.9.

2.4 EPICS Architecture

EPICS software is an excellent representative of modern accelerator control software.

Some of the improvements found in EPICS are described in this work; however, compared

to other available control software, EPICS is reliable and powerful, and it provides a

significant degree of flexibility and performance. EPICS software construction consists

of the following:

EPICS base, a library set for the application programming interface (API) and software

building systems for EPICS application.
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Figure 2.9: microTCA-based LLRF controller installed in Super KEKB.

EPICS application, which includes the EPICS runtime database, EPICS IOC, and

tools.

EPICS extensions, which are extension applications not included in EPICS base, such

as the EPICS sequencer, AutoSave, and the Motif Editor and Display Manager/Exten-

sible Display Manager (MEDM/EDM).

2.4.1 EPICS Runtime Database

EPICS has adopted a client server model. The system configuration diagram for the

EPICS IOC, the runtime database, and the CA client is shown in Fig. 2.10. By reading

and writing the values in a database called the EPICS Runtime DB through the EPICS

IOC, a control that uses EPICS becomes available [48]. In the EPICS system, a reading

I/O device is described as “Get”, and the action of outputting to I/O devices is described

as “Put”. Unlike relational databases such as PostgreSQL and MySQL, EPICS DB uses

a hierarchical database model. In this model, the type of record is described within the

record itself. For example, when a record works simply by reading analog devices, there

is a line that indicates “ai record” in the database file. The types of records that are

prepared by default in the EPICS system are summarized in Table. 2.1. On the other
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hand, when a record has fields, the behavior of the record is defined by coding the fields.

The following code is an example of an EPICS database file [49].

EPICS record names Types

aai Array Analog Input
aao Array Analog Output
ai Analog Input
ao Analog Output
aSub Array Subroutine
bi Binary Input
bo Binary Output
calc Calculation
calcout Calculation Output
compress Compression
dfanout Data Fanout
event Event
fanout Fanout
histogram Histogram
longin Long Input
longout Long Output
mbbi Multi-Bit Binary Input
mbbiDirect Multi-Bit Binary Input Direct
mbbo Multi-Bit Binary Output
mbboDirect Multi-Bit Binary Output Direct
permissive Permissive
sel Select
seq Sequence
state State
stringin String Input
stringout String Output
subArray Sub-Array
sub Subroutine
waveform Waveform

Table 2.1: Type of records in EPICS runtime database by default.

1 record(ai, "$(user):aiExample")

2 {

3 field(DESC ,"Analog input")

4 field(INP ,"$(user):calcExample.VAL NPP NMS")

5 field(EGUF ,"10")

6 field(EGU ,"Counts")

7 field(HOPR ,"10")

8 field(LOPR ,"0")

9 field(HIHI ,"8")

10 field(HIGH ,"6")

11 field(LOW ,"4")

12 field(LOLO ,"2")

13 field(HHSV ,"MAJOR")

14 field(HSV ,MINOR")

15 field(LSV ,"MINOR")

16 field(LLSV ,"MAJOR")
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17 }

Listing 2.1: Example of ai record coded for EPICS database

Figure 2.10: The system configuration diagram for the EPICS IOC, the runtime
database, and CA client
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2.4.2 EPICS CA Protocol

The EPICS CA protocol is implemented in order to enable the communication between

the EPICS server and an EPICS client [50]. A comparison of an EPICS-based system

and a non-EPICS-based system is shown in Fig. 2.11. The CA protocol represents

the presentation layer of the standard model. Through software development in the

specification of the CA protocol, various types of hardware-dependent protocols can be

unified in the client system. The behavior of the CA protocol is shown in Fig. 2.12.

First, the EPICS client searches the records stored in the EPICS server, such as EPICS

IOCs, by sending a user datagram protocol (UDP) broadcast to the subnet. Second,

the EPICS server replies with a UDP packet to the client if the record is found in the

database of the EPICS server. After receiving the UDP packet, the CA client connects

to the EPICS server that sent the UDP packet through TCP. A simple example of a CA

program, which obtains the numerical value from the EPICS IOC and prints the value,

is shown in Listing [49].

1 /* caSimpleExample.c*/

2 #include <stddef.h>

3 #include <stdlib.h>

4 #include <stdio.h>

5 #include <string.h>

6 #include "cadef.h"

7 main( int argc , char** argv){

8 double data;

9 chid mychid;

10 if( argc!= 2) {

11 fprintf(stderr ,"usage:caExample pvname\n");

12 exit (1);

13 }

14 SEVCHK(ca_task_initialize (),"ca_task_initialize");

15 SEVCHK(ca_search(argv [1],& mychid),"ca_searchfailure");

16 SEVCHK(ca_pend_io (5.0),"ca_pend_io failure");

17 SEVCHK(ca_get(DBR_DOUBLE ,mychid ,(void*)&data),"ca_get failure");

18 SEVCHK(ca_pend_io (5.0),"ca_pend_io failure");

19 printf("%s %f\n", argv[1],data);

20 return (0);

21 }

Listing 2.2: Simple example of CA client program coded in C

2.4.3 OPI as Presentation Layer

OPI is the software interface between a computer and a human user. In general, OPI is

a GUI. In the standard model, OPI is implemented in the presentation layer. Given that
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Figure 2.11: A comparison of an EPICS-based system and a non-EPICS-based sys-
tem. The hardware-dependent protocols are converted by CA protocol in EPICS-based

systems.

GUI development can be costly, the EPICS collaboration project allows several tools for

easy GUI construction .

2.4.3.1 MEDM/EDM

MEDM is a Motif GUI used for designing and implementing control screens [51]. EDM

[52], which is another tool for MEDM, also provides the ability to create and edit display

content in the EPICS-based system. All GUI components developed in MEDM/EDM

are displayed on the X Window server. An example of an EDM screen is shown in

Fig. 2.13. Just as drawing a picture is possible using MEDM/EDM, the GUI can be

constructed by arranging GUI components. Currently, the Control System Studio/Best

OPI Yet (CSS/BOY) described in the next section is becoming a standard GUI building

tool for EPICS.
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Figure 2.12: Behavior of the CA protocol. (Ref. Part of the EPICS ”Getting Started”
Lecture Series in EPICS Workshop 2006, VECC, India. Original slide is ”Introduction

to Channel Access Clients” by Kenneth Evans, Jr. Semptember 16, 2004)

Figure 2.13: GUI using EDM for RIKEN 28 GHz super conducting ECR ion source
control in RIBF.
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2.4.3.2 CSS/BOY

In order to integrate the development environment, CSS, which is an Eclipse-based

collection of tools that use JAVA, is provided by the EPICS collaboration project [53].

On the other hand, BOY is implemented as one of the tools included in the CSS for

the construction of OPI [54]. An example of a CSS/BOY screen is shown in Fig. 2.14.

WebOPI (to be described in a later chapter) is also one of the features found in the CSS.

Figure 2.14: Example of a CSS/BOY screen.

2.4.3.3 caQtDM

Instead of the traditional MEDM/EDM based on Motif, a similar function is imple-

mented by caQtDM using Qt [54]. Because Qt is an application UI framework that is

coded in C++, it can be used for developing modern GUIs, such as desktop environments

for major Linux distributions.

2.4.4 Channel Archiver

Data storage is a primary issue in any research facility. Data archiving means moving

data that is no longer actively used to a separate data storage device for long-term

accelerator operation. In the standard model, the archive engine is implemented on the

presentation layer, as well as OPI. For data archiving in EPICS, the Channel Archiver
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can be used as the standard software [55]. On the other hand, the data archiving

function that uses a relational database, such as Oracle database, is implemented in CSS.

Moreover, several data archiving systems developed in-house can also be utilized by each

facility [56–58]. For example, the proprietary Channel Archiver that uses hadoop, which

is a distributed framework, is developed in-house at J-PARC as a method for effectively

managing big data.

2.4.5 Alarm

The Alarm Handler is provided as standard OPI by EPICS collaboration. By setting

the upper and lower limit in EPICS records, the Alarm Handler sounds an alarm for

the accelerator operator when the set value is over an actual value. In addition to the

Channel Archiver, several in-house alarm systems for EPICS-based control systems are

implemented by each facility [59].
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Web-based Systems for

Accelerator Operation

Currently, the Web is widely used as the most common Internet protocol. Web services

that provide a UI component for accelerator control systems already have been uti-

lized for various purposes because such services have the advantages of being platform-

independent systems, providing software maintenance, and can be developed rapidly .

In previous works, Web technology has been utilized to view archived data as an elec-

tronic log notebook, and as a monitoring system without fast response. Further, Web

technology is useful as a means of widely informing about the status of accelerators and

beams. For this purpose, WebOPI was implemented by Spartan Neutron Source (SNS)

as a Web-based system that uses AJAX with EPICS. By improving Web interactive

performance compared to AJAX, a wide variety of applications, such as those used for

troubleshooting and communication, could become available for the remote operation of

accelerators because of their advantages. The effect of utilizing Web-based applications

in accelerator operations is described in this chapter.

3.1 Advantage of Web-based System

Accelerator control systems that use Web services were already devised in 1995 during

development of Internet technologies [60]. Web-based systems have many advantages,

especially in non-large-scale systems. When computers connect to the Internet, such

computers become available to any type of information via the Web HTTP is widely

used as the standard protocol through gateways with a firewall built into the network.

In contrast, dedicated protocols cannot easily reach internal hosts because such proto-

cols cannot access the gateway. In addition, most UI requirements might be satisfied

30



Chapter 3. Web-based Systems for Accelerator Operation 31

using “Web service” techniques owing to the rapid development of the Internet and

other information networks. Compared to custom-built applications developed using

GUI building toolkits such as JAVA Swing, Web applications have advantages for the

following reasons: platform-independence, rapid system development, and ease of system

maintenance.

In traditional systems, the client system is dependent on UNIX and Linux; such systems

also have X Window System servers. In addition, where Microsoft Windows is the

platform, LabVIEW, Visual C, and Visual Basic have been adopted in accelerator control

systems. Then, because of the advent of JAVA, which can run on Mac OS X, Windows,

and Linux, platform-dependency has been resolved to a certain extent. However, JAVA

has not solved completely the issue of platform-independent systems. In the development

of mobile devices that utilize Android and iOS as the OS, the need to resolve platform-

dependency has increasingly become an important issue in recent years. These devices

have provided us with many candidates for an operator console, as well as different styles

for the operation of accelerators and for physical experiments. Using a mobile device,

accelerator operators can also access other equipment, and can easily troubleshoot the

devices, if required.

JavaScript and HTML provide a simplified, rapid method for creating dynamic Web

content, such as AJAX technology. On the other hand, building GUIs, which are not an

essential feature of applications, incurs costs in many cases of desktop applications that

use common programing languages, such as JAVA, C, and C++. For simple and efficient

development of GUI applications, a combination of HTML and JavaScript enables rapid

development of Web-based applications that are server and platform-independent.

In order to update to the latest version of an application, it is costly and inefficient to

provide a method where a desktop application is required to be installed on many PCs.

From the perspective of software maintenance, the implementation of a Web application

for control systems might result in significantly reduced costs.

In addition, Web-based remote access has possibilities for saving the bandwidth of

network resources compared with traditional technologies, such as VNC, remote desktop,

and the X Window System. Based on these advantages, there have been many attempts

to introduce Web-based applications for accelerator and experimental control.
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3.2 Implementation of Web-based System for Static Ac-

cess

From the 1990s to around 2007, almost all Web-based systems have been used for

static access in control systems, such as applications for archive viewers and log note-

books, where fast response is not required. For comparison, in this section, the author

introduces previous studies that are implementations of Web-based systems for static

access.

3.2.1 Hardware Maintenance for GAN

In the GAN project, Web services were discussed to be used for diagnostic access

[2]. According to the article, hardware maintenance personnel often have many different

requirements from machine operators; consequently, the Web server interface must allow

the former to perform much of their own software development and maintenance work.

3.2.2 Video Sharing System at KEKB

By using Comet technology, the KEKB control group has constructed a sharing system

in order to view GUI panels and video images using a Web browser [61]. Comet is a Web

application model in which a long-held HTTP request allows a Web server to push data

to a browser. The main feature is to deliver the GUIs, which appear on the X Window

System, to a large number of users using Web technology. By converting the GUI panel

to an image file and providing the image file periodically, the system realizes a display

similar to an interactive action on the Web browser.

3.2.3 MyDAQ2 at SPring-8

At JASRI/SPring-8, a simple data logging and display system, called MyDAQ2, was

developed utilizing a MySQL-based relational database and the Apache HTTP server

[62]. For this system, the logged data is displayed and plotted as charts using gnuplot,

and provided by a Comma-Separated Value (CSV) file via a Web browser (See Fig. 3.1).

3.2.4 Electric Log Notebook

Instead of recording information on paper, an electronic log notebook is widely used

as a Web service in accelerator operations [63–66]. Using a Web application for the
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Figure 3.1: Screenshot of MyDAQ2.

electronic log notebook is a suitable method, considering their increased flexibility and

lower maintenance costs when compared to desktop application electronic notebooks.

The screenshot of the Zope-based electronic log notebook (Zlog), which has been adopted

for KEKB, J-PARC, and RIBF, is shown in Fig. 3.2.

3.2.5 EPICS Channel Archive Viewer

For the KEKB injector linear particle accelerator (LINAC), a Web-based data viewer

that displays and plots data on a chart has been implemented and developed using the
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Figure 3.2: Screenshot of Zope-based electric log notebook (Zlog).

JAVA Swing GUI library and a commercial charting library [67].

3.2.6 NAGIOS Alarm

At the Argonne National Laboratory’s Advanced Photon Source, an Infrastructure

Monitoring System (IMS) has been developed to provide immediate notification to the

Control Group on-call staff in the event of failure of critical controls hardware compo-

nents or software processes [68]. In this system, NAGIOS , an open-source host, service,

and network monitoring program, has been interfaced to EPICS CA monitoring tools to

provide historical tracking of control infrastructure events, email, and pager notifications

to on-call staff, as well as Internet-accessible status Web displays.

3.3 Implementation of Web-based System for Dynamic Ac-

cess

After work on Web-based systems with static access, Web-based systems have been

used for monitoring the system of accelerator parameters with dynamic access such as

OPI in accelerator control systems. In this section, the implementation of Web-based

systems with dynamic access by previous studies is discussed because this study also

aims to improve the interactive performance of Web-based EPICS OPI for use with

remote operation.
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3.3.1 CAML and WebCA

As is clear from previous sections, Web applications have been used conventionally for

static work only, such as viewer applications for archived data and electronic notebooks.

On the other hand, the use of Web applications for static work, in addition to OPIs

with dynamic access, has been implemented since 2008 [69]. In the case of EPICS-

based distributed control systems, SNS has planned and implemented the CA Markup

Language (CAML) to call the CA API from an XML file. The behavior of the CA

connection in CAML is based on WebCA, which is the Firefox/Safari plug-in module

developed by Cosylab. Therefore, a Web browser with the WebCA plugin connects to

EPICS IOC using CA directly. The behavior of WebCA, CAML, and a Web browser is

shown in Fig. 3.3, and the screenshot of the CAML-based client system is shown in Fig.

3.4.

The main feature of CAML is that the Web browser connects to the CA server directly

via the WebCA plug-in module. The values obtained from the CA server can be managed

in the XML format, and a JavaScript chart library is used for plotting the data.

In CAML-based systems, it is possible to display the GUI using a Web browser. How-

ever, there is no use for an HTTP method between the web browser and the CA server,

and the CA protocol is used as dedicated protocol. Though a Web browser is utilized to

display OPIs, it is not a suitable method for use with remote operation because this sys-

tem is similar to a general desktop application as described in Section 1.4.5. Given that

CAML utilizes the function of the CA protocol in the layer between the Web browser

and EPICS IOC, the sending of a request might not be reached in the case of remote

operation via a WAN. In addition, CAML depends on the type of Web browser because

it is necessary to use the plug-in for Firefox/Safari.

3.3.2 Web Services Interface to EPICS CA

The standard model of modern accelerator control systems consists of three layers:

the presentation layer, equipment control layer, and device interface layer. In previous

studies [70], a presentation layer on the standard model that is a multi-purpose Web

interface layer has been proposed for the development of higher EPICS CA application

using cross-platform and cross-development methods.
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Figure 3.3: The system chart of CAML.

Figure 3.4: The example of CAML-based GUI panel displayed on Web browser.
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3.3.3 Flex-based Web Interface

At Beijing Electron-Positron Collider II (BAPCII), EPICS data that includes beam

energy, beam current, lifetime, and luminosity are displayed in a Web-based real-time

chart developed by Adobe Flex [71]. This Flex-based system is utilized by a Web server

installed CAJ, which is a module to interface to JAVA and EPICS CA. On the other

hand, a data acquisition method in this system utilizes polling access to Web servers.

3.3.4 WebOPI

At the International Conference on Accelerator and Large Experimental Physics (ICALEPCS)

2011 in Grenoble, France, the SNS engineers published WebOPI as one of the features

for CSS [72]. WWebOPI aims to provide Web access to EPICS-based OPIs that were

created in CSS/BOY, without modification. In WebOPI, the function for displaying a

numerical value on the Web in real-time is implemented using AJAX technology. To

publicize information via the Internet, it is only necessary to install Tomcat as the Web

server with JAVA servlet container, and it is not necessary to modify the OPI file created

by CSS/BOY. The screenshot of WebOPI is shown in Fig. 3.5.

3.4 Communication in Remote Operation

It is often necessary to control an accelerator from various locations, in addition to

the central control room, during beam operation and maintenance. On the other hand,

accelerator control systems have many types of users: accelerator operators, accelera-

tor engineers, accelerator physicists, and experiment users. During experiments using

the accelerator, many users will need to share standardized displays and be able to

communicate with each other.

For communication between on-site operators and remote users, it is also necessary

to implement a remote control system that comprises collaboration technologies, such

as text-based chat tools, videoconference tools, and electronic log notebooks. Various

types of communication tools have been developed already, and electronic notebooks are

widely used at standard accelerator control systems.

In the case of GANMVL, video/audio communication tools might be invaluable in al-

lowing experts to work together on accelerator operation at the global level. This is

because such communication tools help mitigate communication apprehension caused

by differences in the native languages of local staff and some of the global experts. Ac-

cording to this model, the expert staff from each laboratory remains based at their home
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Figure 3.5: The example of WebOPI-based GUI panel displayed on Web browser.

institution, and continues to participate in the machine operation after construction. For

this reason, there is significant utility in implementing such a feature as communication

tools using the Web.

3.5 Remote Operation for Troubleshooting

In general, an accelerator facility consists of many components, such as RF, the mag-

net’s power supply, vacuum, beam diagnostic instruments, water cooling, and the control

system. Given that the staff/developers of the accelerator components have a respon-

sibility for resolving machine problems, such personnel should verify conditions as soon

as possible if there is a warning sign.

In some rare situations, such as accelerator problems and change of beam conditions

(beam emittance, etc.), on-site accelerator operators might require seeking direction

from other engineers or scientists over the telephone when said engineers or scientists are
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away from the laboratory. In such scenarios, the ability to provide the exact directions

required by accelerator operators is contingent on the amount of information required

for remote troubleshooting. However, even in cases where the native languages are

not in conflict, it is difficult to correctly provide detailed information about accelerator

conditions via telephone and voice communication, because insufficient information is

obtained by listening compared to observing. For these reasons, there is a significant

need to monitor and maintain devices from anywhere via the Internet and the Web.

3.6 Cost-effective Accelerator Operation

Future accelerator projects will grow larger, resulting in higher electricity costs. Even

if there is only one problem with the components, it might not be possible to provide

beam service to experiment users. In Japan, which is one of the sites proposed for

ILC, electricity costs are increasing because of the Fukushima nuclear accident that

occurred after the Great East Japan Earthquake of 2011. In order to save electricity

costs, possible errors caused by the operation of remote users must be prevented during

troubleshooting tasks performed via remote operation.

For such cases, it is important to reduce beam tuning time and accelerator standby time

to the maximum. Therefore, in this situation, communication between on-site operators

and remote users is considered extremely important, and all information about the

activities that occur in the local control room should be communicated to remote users.

As described in the previous sections, Web technology is used for applications with

dynamic access such as OPI; however, interactive performance is not sufficient. In

addition, given that general accelerator control systems are implemented with dedicated

local networks, the control systems must also improve the safety of remote operation

and network security when remote users gain access from the Internet.
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WebSocket Interface for EPICS

During beam operation and maintenance, it is often necessary to control accelerators

from different locations and from the central control room. However, it is not practical to

replace the GUI-based OPI with a Web-based system using AJAX technology because of

interactive performance issues. Therefore, as a next-generation OPI over the Web using

the EPICS CA protocol, the author developed a client system based on WebSocket,

which is a new protocol provided by IETF for Web-based systems. WebSocket is a web

technology that provides bidirectional, full-duplex communication channels over a single

TCP connection. By utilizing Node.js and the WebSocket access library called Socket.IO,

WebSocket servers have been implemented for use in accelerator control systems. Node.js

is a server-side JavaScript language built on the Google V8 JavaScript Engine. In order

to construct a WebSocket server as an EPICS CA client, an add-on for Node.js was

developed by the author in C/C++ using the EPICS CA library, which is included in

the EPICS base. As a result, for accelerator operation, Web-based client systems have

become available with various types of equipment as well as in central control rooms.

4.1 Development Background

One of the advantages of an EPICS-based system is the unified communication protocol

between a front-end controller and the client systems provided by the CA protocol. Thus,

even when various types of controllers are used as control systems, all client systems, such

as OPIs, can be developed based on the CA protocol without hardware dependencies.

In general, a method that uses the CA libraries or the display manager supported by

EPICS collaboration, such as MEDM/EDM (see Section 2.4.3.1) and CSS/BOY (see

Section 2.4.3.2) has been adopted for GUI development in the EPICS-based system.

On the other hand, the engineers at SPring-8 proposed development methods for the
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main OPI using WebSocket and implemented a prototype [73]. The prototype system

was constructed using a MADOCA control system framework that was developed at

SPring-8.

As described in Chapter 3, Web-based systems have many advantages for accelerator

control systems. By utilizing WebSocket technology, it is possible to solve the issues

of Web-based systems, such as those described in Section 3.4, because of dramatic im-

provements in interactive performance compared with AJAX-based Web applications.

That is, for OPIs, the communication method, and the troubleshooting method, vast

improvements are possible through the Web when remotely operating accelerator equip-

ment. For the EPICS-based system, traditional Web applications lack the interactivity

required to operate some of the hardware for accelerator control systems.

However, in the case of SPring-8, the control system framework is MADOCA, which

is described in Section 2.2.3. Given that real-time Web applications have many advan-

tages, the author developed a corresponding WebSocket server for the EPICS CA, and

implemented Web applications using WebSocket for the EPICS-based control system.

4.2 WebSocket Architecture

WebSocket is a new protocol for achieving bidirectional communication between a Web-

Socket server and a Web browser. Originally, WebSocket was part of HTML5. Through

draft versioning, WebSocket was formulated as an RFC6455 by ITEF in December 2011

[74]. WebSocket can be used for real-time applications because of low protocol overhead.

The WebSocket API specifies how to create and access WebSocket within a Web browser.

A WebSocket connection is established via JavaScript, and then, it becomes available

for sending/receiving messages and executing error handling through a connection.

4.2.1 Overview of the Protocol

The WebSocket protocol is an independent TCP-based protocol. Its only relationship

to HTTP is that its handshake is interpreted by HTTP servers as an Upgrade request.

An overview of the communication for the WebSocket protocol is shown in Fig. 4.1.

The WebSocket specification is as follows:

1. The initial handshake starts at the HTTP level. A Web browser sends a handshake

request to the HTTP server to connect to WebSocket. The following is an example

of a handshake request from the client [74].
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GET /chat HTTP/1.1

Host: server.example.com

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==

Origin: http://example.com

Sec-WebSocket-Protocol: chat, superchat

Sec-WebSocket-Version: 13

2. The server sends a handshake response after approving the request from the Web

browser. The following is an example of a handshake response from the server.

HTTP/1.1 101 Switching Protocols

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=

Sec-WebSocket-Protocol: chat

3. After establishing the handshake, the protocol switches to WebSocket, and then

a bidirectional communication occurs between the WebSocket server and the Web

browser.

A more detailed view of the WebSocket frame structure is provided in Fig. 4.2. As

shown in the figure, WebSocket allows interactive responses, thus compensating for

disadvantages that cannot be eliminated with traditional HTML.

4.2.2 WebSocket API

To establish a WebSocket connection with a Web server, it is necessary to send data

from the Web browser using the send( ) method to the client-side JavaScript. The

following line of code is the API that creates a new WebSocket object.

var Socket = new WebSocket(url, [protocol] );

where the first argument, url, specifies the uniform source locator (URL) to which to

connect. In general URL naming convention, the WebSocket protocol defines the ws://

and the wss:// prefixes as indicators for a WebSocket and a WebSocket Secure connec-

tion, respectively. The second attribute, protocol, is optional and if present, it specifies

a sub-protocol that the server must support for the connection to be successful. Table
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Figure 4.1: Overview of the communication with the WebSocket protocol.

Figure 4.2: Detailed WebSocket frame structure provided by RFC6455. (Ref.
https://tools.ietf.org/html/rfc6455)
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Event Event Handler Purpose

open Socket.onopen Socket connection is established.

message Socket.onmessage Client receives data from server.

error Socket.onerror Error has occurred with communication.

close Socket.onclose Socket connection is closed.

Table 4.1: Types of WebSocket events.

4.1 lists the events associated with a WebSocket object. In a WebSocket connection,

data are sent as events from the WebSocket server to the client.

Table 4.2 lists the methods associated with a WebSocket object.

Method Purpose

Socket.send() send(data) method transmits data via the con-
nection.

Socket.close() close() method is called before any existing
connection can terminate.

Table 4.2: Types of WebSocket methods.

4.2.3 Example of WebSocket code

In this section, the author shows an example of WebSocket code for client-side JavaScript

(see Section 4.1). After the HTTP handshake, the WebSocket starts to connect with

the bidirectional TCP socket between the Web browser and the WebSocket server. This

sample JavaScript code uses the free echo server (http://www.websocket.org/echo.html)

to establish the WebSocket connection.

1 var Socket = new WebSocket(’ws:// echo.websocket.org’);

2 Socket.onopen = function () {

3 console.log("Connection is successful");

4 Socket.send("Hello world");

5 };

6 Socket.onmessage = function (rs) {

7 var receivedData = rs.data;

8 console.log("Message exists.");

9 console.log(receivedData); // Hello world

10 };

Listing 4.1: Example of clent-side JavaScript code for echo server.



Chapter 4. WebSocket Interface for EPICS 45

4.3 WebSocket for EPICS-based System

Thus far, various types of Web services in EPICS-based systems have been implemented,

for example, data archive viewer, electric log notebook, and so on (see Section 3.2).

However, such services have been implemented only in Web-based systems, where a fast

response and monitoring are unnecessary, such as for archive viewers and electric-log

systems. This is because it is difficult for a Web-based OPI to realize a real-time response

similar to native applications, such as EDM/MEDM/CSS, even if AJAX technology is

utilized. Given that bidirectional transmission between a server and clients is now

possible, the aforementioned problem can be solved with WebSocket. In practice, the

author has confirmed a sufficient interactive response in a 100-ms cycle using WebSocket

on a Web browser (Mozilla Firefox), and the performance is similar to that of native

EPICS applications. Furthermore, given that periodic polling is unnecessary, unlike

AJAX and Comet, network traffic can be reduced.

OOn the other hand, WebSocket cannot work with Internet Explorer (IE) 9, which is one

of the main browsers in existence today, because a WebSocket connection is unavailable

in IE 9. However, this problem was resolved in IE 10, because Microsoft intended for IE

to be compliant with WebSocket [75]. Currently, IE 10 and higher support WebSocket.

In order to implement a WebSocket-based system with EPICS, the former must consist

of a WebSocket server that corresponds with the EPICS CA protocol as the server-side

system, and a WebSocket client that is coded based on the document object model

(DOM)[76]. The outline of the EPICS-based OPI using WebSocket is shown in Fig. 4.3.

4.4 Server-Side System

Because the development of an entirely original EPICS-based WebSocket server is ex-

pensive, the author decided to use a library that includes a WebSocket server function.

Initially, the author made use of libwebsockets [77] and Jetty [78], which also provides a

WebSocket server feature, for the development of WebSocket support for EPICS. How-

ever, after considering the difficulty of developing such a WebSocket, the author utilized

Node.js [79] and the WebSocket library Socket.IO [80] to aid in the development of

the WebSocket server. Node.js is one of the server-side JavaScript languages developed

based on the Google V8 JavaScript Engine [81].

One of the main features of Node.js is that it works asynchronously with single-thread

processing. A significant number of human resources might be required for the develop-

ment of an entirely original asynchronous WebSocket server; however, Socket.IO, which
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Figure 4.3: Outline of EPICS-based OPI using WebSocket

is a library for the construction of WebSocket servers, is used because it contains all the

functions required for the development of an asynchronous WebSocket server. There-

fore, Node.js 0.6.18 and Socket.IO 0.9.6, which are the stable versions of these tools,

were utilized for the development of the WebSocket server.
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4.5 Channel Access for Node.js

In order to implement the WebSocket server with a CA connection using Node.js,

Node.js must call the CA API. Therefore, the author developed the add-on software

called NodeCA using C++ in order to interface with the CA from Node.js. Given that

Node.js can call NodeCA, NodeCA utilized the CA library provided by the EPICS base.

To call CA from Node.js, caGet, caPut, and caMonitor, which are basic functions in

EPICS, were created.

In general, an event-driven caMonitor requires a non-blocking algorithm in the program

that uses it, but the single-threading Node.js can cause the thread to be blocked because

of negligent implementation. Consequently, in order to prevent thread blocking, NodeCA

waits for the CA event in another thread; when the CA event arrives at that thread,

NodeCA sends the message queue to the main thread. Fig. 4.4 shows an overview of

NodeCA. In Fig. 4.4, the software developed by this research is shown in the grey area.

Examples that use NodeCA with caGet, caPut, and caMonitor are provided in this

section. Note that at the start of each example, it is necessary to set require(”nodeca”)

as the add-on software.

Figure 4.4: Overview of NodeCA.

4.5.1 Sever-side caGet Example

This program fetches a value as a TEST:calc record from the EPICS IOC in intervals

of 100 ms using caGet, and outputs the numerical value using console.log( ).

Based on a comparison with a simple CA client written in the C language, which is

described in Section 2.4.2, it is evident that coding the CA client using NodeCA can be

performed with ease.
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1 var pv = require("../ build/Release/nodeca")

2 function cagets (){

3 console.log(pv.caget("TEST:calc"));

4 }

5 setInterval(cagets ,100);

Listing 4.2: Example of server-side JavaScript code for caGet function.

4.5.2 Sever-side caPut Example

This program changes the value that is stored in the TEST:subExample record of EPICS

IOC to five via the WebSocket server.

1 var pv = require("../ build/Release/nodeca")

2 pv.caput("TEST:subExample" ,5);

Listing 4.3: Example of Server-side JavaScript code for caPut function.

4.5.3 Server-side caMonitor Example

This program outputs the numerical value of the TEST:ai record through an event-

driven behavior. (When the TEST:ai record is changed, the value is sent to the client

automatically.) In order to receive the value, the pv.callback method is required before

running the pv.camonitor method, because Node.js is implemented through an asyn-

chronous algorithm.

1 var pv = require(’../ build/Release/nodeca ’);

2 function mon(){

3 pv.callback=function(v){

4 console.log(’Value: ’ + v);

5 }

6 pv.camonitor("TEST:ai" ,0);

7 }

8 setTimeout(function (){

9 mon();

10 } ,1000);

Listing 4.4: Example of server-side JavaScript code for caMonitor function.
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4.6 WebSocket Server with EPICS CA

The WebSocket server that corresponds to the EPICS CA protocol was developed

utilizing NodeCA as described in Section 4.3.2. Given that the WebSocket server was

written with Node.js, both the Web server and the Web client are developed using

the JavaScript language. (Recall that Node.js is a server-side JavaScript language.)

The system chart for the WebSocket server is shown in Fig. 4.5. The corresponding

algorithm is described as follows:

1. In the code of the client-side JavaScript, custom events (caGet, caPut, and ca-

Monitor) are sent to the server using the WebSocket protocol.

2. In the case of a caGet/caPut event, the main process makes threads (caGet, caPut),

and the threads connect to EPICS IOC using the CA protocol.

3. The information between the main process and the thread is communicated using

a message queue as the interprocess communication (IPC).

4. In the case of a caMonitor event, the main process makes a child process and the

child process makes a thread (caMonitor). The thread continues to connect to

EPICS IOC using the CA protocol.

5. Similar to the case of caGet, in the case of caMonitor, the information between

the main process and the thread is communicated by message queue, and the main

process and the child process communicate using the IPC (child.fork( )) provided

by Node.js.
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Figure 4.5: System chart for WebSocket server.
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4.7 Client-Side System

An example of coding in the client-side JavaScript is as follows:

1 socket.emit(’caMonitor ’,{

2 pv: ’Example:ai1’,

3 data_name: ’TEST2’,

4 });

5 socket.on(’ca’, function(data){

6 document.getElementById("TEST_record1").innerHTML = data.TEST2;

7 });

Listing 4.5: Example of caMonitor for client-side JavaScript.

The behavior of this example is as follows:

1. The client-side JavaScript obtains a value from the Example:ai1 record by sending

a message of the event-driven caMonitor in WebSocket.

2. The value is stored in data.TEST2.

3. Through DOM operation, the value is updated on the HTML with respect to each

CA event.

It is possible to realize a text update, such as EDM, by coding DOM with JavaScript on

the Web. DOM is a platform and language-neutral interface that allows programs and

scripts to access and update content dynamically, and to structure and style documents

[82]. The following is a concrete example of HTML, where a DOM element, such as the

<div> tag, is updated on a Web browser through JavaScript code.

1 <div id="hoge">hogehoge </div >

2 <script type="text/javascript">

3 document.getElementById("hoge").innerHTML = "hello world";

4 </script >

Listing 4.6: Example of conding DOM

In this example, the code replaces ”hogehoge”, which is surrounded by a <div> tag,

with ”hello world”. This method is used for WebSocket-based systems and for tradi-

tional HTML technology, such as AJAX. The difference between AJAX or Comet and

WebSocket is based on the communication method used to update values.

Other libraries used in this WebSocket-based system are flot [83] and jsgause [84],

which are jQuery-based JavaScript libraries; these libraries are used in this system for

the visualization of accelerator parameters. Many JavaScript libraries, other than those

mentioned at the start of this paragraph, are also available for the visualization of
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information, such as strip charts. As a result, the client system has the advantage of

low development costs because money can be saved in multiple steps.

A verification system was constructed that is useful for remote operation because a

response comparable to native EPICS applications is confirmed. In addition to PC-

based Web browsers, the use of OPIs on Web browsers for iPhone4S and Android mobile

is available. A screenshot of WebSocket-based OPIs is shown in Fig. 4.6, 4.7 and the

Web browsers supported by this system as of July 2012 are listed in Table 4.3. Chapter

6, which describes the system implementation, reports such systems in detail.

Figure 4.6: Screen shot of sample OPI displayed on PC-based Web browser (Google
Chrome).

Windows/Linux Google Chrome 20, Mozilla Firefox 14, Opera
11

Android 4.0 Google Chrome 18, Mozilla Firefox 14

iOS Safari 5, Google Chrome 19, Mercury

Table 4.3: Web browsers supported by the WebSocket-based OPI as of July, 2012.
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Figure 4.7: Screen shot of example OPI displayed on mobile Web browsers. Left
figure is for android mobile and right figure is for iPhone4S.

4.8 Example of Use of Node-CA

As well as this study, Node-CA was used for construction of WebSocket-based system

in KEKB Linac control system [85]. In the KEKB injector Linac, information regarding

accelerator operation has been provided through HTTP services and CGI since 1994.

In order to provide such information in real time, WebSocket-based OPI was developed

using Node-CA. As a result, detailed information on the accelerator operation was suc-

cessfully provided for the entire KEK campus using a new GUI panel, which appears on

the Web (See Fig. 4.8).
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Figure 4.8: Screen shot of operational panel using Node-CA for KEKB injector Linac.



Chapter 5

Operator Intervention System

Accelerator facility management through international collaboration often requires

methods for remote maintenance, control, and monitoring of associated devices. For

example, a method needs to be provided to connect to the control system network via

WAN links from various collaborating institutions. However, from a practical applica-

tion standpoint, the remote operation of an accelerator via WAN is beset by a number

of concerns, including security concerns.

A particular concern is that the accelerator has both experimental devices and radiation

generator characteristics. Additionally, any error in the operation of remote control

systems could result in an immediate breakdown. For these reasons, the author proposes

the implementation of an operator intervening system for remote accelerator diagnostics

and support that can obviate any differences between the local control room and remote

locations. After the implementation, the on-site accelerator operator can determine

the availability of the equipment, and decide whether to grant operation requests from

remote users.

5.1 Development Background

As described in Section 1.3, there are several cases of cooperation between experts

and remote operators across WAN links for accelerator operations. In situations such

as accelerator problems and change-of-beam conditions (for example, beam emittance

from ion sources), on-site accelerator operators require directions over the telephone

from other engineers or scientists with regard to accelerator components, such as RF,

vacuum, beam diagnostic, control system, and ion source. In such scenarios, the ability

to provide the exact directions that are required by accelerator operators is contingent on

55
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the amount of information required for remote troubleshooting. Even in cases where the

native languages are not in conflict, it is difficult to correctly provide detailed information

about accelerator conditions via the telephone and through voice communication because

not enough information can be obtained by listening compared with seeing.

On the other hand, and as described in Chapter 4, WebSocket-based operator interfaces

(OPIs) are available to resolve problems via WAN links because of the development of a

global Internet society. In addition to monitoring accelerator parameters from locations

distant to the accelerator control room, remote users can operate accelerator devices that

provide outputs, even if there are no concerns such as radiation safety, human physical

safety, and network access security.

However, accelerators should be controlled with utmost care because accelerators have

both experimental devices and radiation generator characteristics. From past experience

with the operation of accelerators, the author believes that the atmosphere of the accel-

erator control room is an important factor during beam tuning. For example, because

almost all accelerator information is integrated into the accelerator control room, the

implementation of joint monitoring with multiple operators to observe the condition of

the accelerator is a useful method for avoiding any problems that might arise.

In order to prevent operational mistakes, the accelerator conditions need to be under-

stood in their entirety. Therefore, it is necessary to consider a safety system with on-site

accelerator operator intervention in order to control output via remote access. Note that

a safety mechanism is indispensable when the remote operation needs to monitor param-

eters and control output in order to prevent accelerator problems caused by operational

mistakes.

To address safety issues and improve the usability of remote operations, the author

developed an operator intervention system for WebSocket-based OPIs for the EPICS

[86].

5.2 Security Policy

First, the author considered the following in order to protect accelerator networks from

outside intrusion. In the case of accessing accelerator networks from the WAN, the

author ensured the security of WebSocket access using VPN and authentication via a

Secure Sockets Layer (SSL). In addition, accelerator operators have to completely under-

stand users attempting to access the network (login ID and so on) and access route (full

domain of Internet providers and so on) before WebSocket control is allowed. Therefore,

all accessing logs for WebSocket control should be open to accelerator operators.
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Next, the author considered instructions for accelerator operation to EPICS IOC from

the Web browser via WebSocket. For caPut, which provides instructions to each device

or component during accelerator operation, accelerator operators need to know the ac-

tion and behavior perfectly. On the other hand, it would not matter if such operators

did not understand some simple instructions in detail, such as caGet and caMonitor,

which are used to monitor or obtain numerical values for accelerator parameters. If some

accelerator parameters are changed using the Web application from outside internal net-

works without considering beam tuning, the accelerator condition might be complicated

in many cases. Thus, when using caPut, a policy is required between accelerator opera-

tors in the control room and remote users exerting control remotely over the Web. The

following are proposed for this policy.

1. Before remote users exercise remote control over the Web, they have to communi-

cate with accelerator operators using VoIP system such as Skype.

2. On-site accelerator operators check the user ID and the domain or IP address of

the Internet provider for remote users.

3. Remote users send a request to accelerator operators when sending caPut instruc-

tions to the EPICS record.

4. In response to requests from remote users, accelerator operators make judgment

decisions regarding whether components in the EPICS record can be controlled

using WebSocket. A response is returned to remote users regarding whether it is

possible to operate said components in the EPICS record.

5. After receiving this response, remote users can not only monitor, but also operate

components via WebSocket.

6. If accelerator operators make judgment decisions to interrupt operation, accelera-

tor operators discontinue WebSocket operations as soon as possible. In addition,

if a certain period passes, permission for WebSocket operation will be cancelled

through timeout.
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5.3 System Concept of Operator Intervention System

The purpose of the proposed operator intervention system is to ensure safe remote

output control of EPICS via the WebSocket server. To simply monitor the status of

the accelerator parameters using the WebSocket-based OPI, permission from the on-site

operator is not necessary, provided that authentication has been accomplished through

an SSL connection. The WebSocket-based client system is designed such that output

control via remote operation always requires the permission of an on-site accelerator

operator who can intervene at any time.

The main part of the proposed operator intervention system consists of a Process

Variable (PV) gateway provided by EPICS collaboration [87], a MySQL database, and

AJAX web applications. Unlike OPI, real-time interactive response is not required for

sending output control permission, or for viewing access logs in the operator intervention

system. Consequently, in consideration of the difficulty of system development, the

author utilized a Linux, Apache, MySQL, PHP (LAMP) environment for the operator

intervention system without using WebSocket. The procedure for the implementation of

the proposed operator intervention system is as follows (see Fig. 5.1 for an illustration.).

The detailed system design is described in Section 5.5.

1. First, on-site accelerator operators grant permission to every output of PVs that

corresponds to the EPICS hardware devices.

2. If PVs have not been granted permission, the operator intervention system always

rejects the output command in the CA protocol layer.

3. On-site operators can decide the upper and lower limits of remote control operation

before sending permission commands.
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Figure 5.1: Procedure for implementation of proposed operator intervention system.
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5.4 Basic Technology for Operator Intervention System

In this section, the underlying systems used by the proposed operator intervention

system are described in detail.

5.4.1 Virtualization Technology

Virtualization technology allows the sharing of hardware resources through cloud com-

puting. Some examples of such virtualization technology are KVM, Xen, Hyper-V, and

VMware, and such software is widely used in many situations. Server virtualization is

a technology where the OS of several virtual guests can be run in one physical server

(see Fig. 5.2). In order to enhance the efficient operation of server hardware resources,

the software listed previously can be used also to construct accelerator control systems

[88–93]. On the other hand, such an operator intervention system needs to consist of

several servers with low server load. Therefore, VMware vSphere Hypervisor, which

is free virtualization software produced by VMware Inc., has been adopted considering

system security and ease of system construction.

5.4.2 EPICS Process Variable Gateway

In the EPICS-based system, the PV gateway is used for its feature as a proxy system for

the CA connection. In general, the PV gateway is installed for the purpose of relaying

the CA servers, such as EPICS IOC, and CA clients, to reduce the network load in the

EPICS-based system (see Fig. 5.3). In addition, access restriction, namely the EPICS

Access Security Group (ASG), is implemented in the PV gateway as well as the EPICS

IOC. ASG is described in the next section. In the proposed operator intervention system,

the WebSocket server always connects to the EPICS CA server via the PV gateway.
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Figure 5.2: Outline of virtualization technology.

Figure 5.3: Outline of PV gateway.
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5.4.3 EPICS Access Security Group

EPICS ASG is a security function for implementing restrictions to access the EPICS

IOC and PV gateway through the use of a configuration file [50]. Using ASG, it is

possible to realize access permission and read/write access through a host name and a

login name. An example of the configuration file is as follows.

1 UAG(uag) {user1 ,user2}

2 HAG(hag) {host1 ,host2}

3 ASG(DEFAULT) {

4 RULE(1,READ)

5 RULE(1,WRITE) {

6 UAG(uag)

7 HAG(hag)

8 }

9 }

Listing 5.1: Example of the configuration file for ASG.

The previous sample file configures all hosts to be allowed to read PV values. In

addition, the sample file configures host1/host2 as the hostname, user1/user2 as the

login name, and grants the hostname and login name permission to write PV values. By

utilizing the login name and hostname used by the client PC, ASG can restrict access to

the CA server. However, it is not possible to use ASG as a complete security mechanism

because the login name and hostname depend on system configuration, and malicious

impersonation is possible.

5.5 System Policy

The operator intervention system can control the availability of remote operations by

sending system flag values to the MySQL database. The access control mechanism

for the CA protocol is utilized by the access control security system of the PV gate-

way. In particular, a daemon polls the database and updates the security access file

(GATEWAY.pvlist) with information that corresponds to the flag values dynamically.

A flowchart that illustrates system operation for remote connections is depicted in Fig.

5.4 and described as follows:

1. Remote users send EPICS PV requests to the operator intervention system to

control the output, such as caPut command, via WebSocket (Phase flag 0).

2. Then, on-site operators ascertain whether the requested PVs are available for

control (Phase flag 1).
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3. If control is possible, a command to accept is sent by on-site operators (Phase flag

2); otherwise, a refuse command is sent (Phase flag 3).

4. On-site operators can terminate remote operation at any time, for example, if

problems with the accelerator arise (Phase flag 3).

5. A process that manages the time duration of the remote operation sends a timeout

command after a certain period has elapsed (Phase flag 4).

Figure 5.4: Flowchart illustrating operation of system for remote connection.
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5.6 System Design

The proposed operator intervention system was developed utilizing virtualization tech-

nology and the EPICS PV gateway described in Section 5.3.2. In this section, the system

design for the operator intervention system is described.

5.6.1 Required Services

The operator intervention system comprises important services that run on several

distributed hosts. A chart of the system is depicted in Fig. 5.5. The MySQL service is

necessary to store the flag value via an internal network. The Apache web server and

network file system (NFS) is run on an application server. NFS is used to share log

files among the WebSocket server, the Apache web server, and the PV gateway via the

internal network, as well as the MySQL service. WebSocket server programs developed

using Node.js run on a separate host that connects to the MySQL database and the

EPICS IOCs via the PV gateway.

5.6.2 Preventing Impersonation

In order to make a test installation of multi-layer network structures, virtualization

technology is utilized in order to prevent malicious impersonation. The access control

security system does not comprehensively cover access from the Internet because EPICS

is not able to completely prevent impersonation (see Section 5.3.3). In general, a defense-

in-depth network system with a multi-layer network structure is one of the most useful

methods for improving network security. In this system, the author implemented a

multi-layer network structure that consists of servers running in a virtual environment

on one physical server. In the system, network attacks and unlawful access are thwarted

using a defense-in-depth network to prevent access from a physical network (see Fig.

5.6).

The author implemented a virtual environment using VMware vSphere Hypervisor 5,

which can be used free of cost. The specifications for the physical server are listed in

Table 5.1. The author used CentOS 5.9 as the operating system for the virtual machines.

On the other hand, the defense-in-depth network will be composed of multiple physical

servers in the real implementation.
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Figure 5.5: System chart showing operator intervention system, EPICS IOCs, and
WebSocket server.

CPU Intel Core i7-3770

Memory 16G Byte

Storage SATA

Ethernet Dual-network connection

Table 5.1: Physical server specifications.

5.6.3 Setting Upper/Lower Limits

In general, EPICS utilizes DRVH/DRVL fields to set the upper and lower limits of the

analog output (ao) records [50]. In this case, however, utilizing the DRVF/DRVL fields

of the EPICS IOCs to control the system network is not wise because it might cause

problems, such as lack of parameter settings, in normal operation with remote users.

As a result, the author implemented the function by modifying the source code of the

PV gateway. Consequently, the customized PV gateway has a GATEWAY.limit file to
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Figure 5.6: Network chart of system in VMware virtualized environment.

set the upper and lower limits, as well as GATEWAY.pvlist and GATEWAY.access files

for access control.
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5.6.4 UIs

The author developed the interface of the operator intervention system as a web ap-

plication using AJAX because such interface is not required to be as responsive as the

WebSocket-based OPI. The UI of the operator intervention system is shown in Fig. 5.7.

On-site operators can verify the requested EPICS PVs, completed PVs, and in-operation

PVs in one view. Similarly, all the access logs and caPut logs are available for verification

by the on-site operator at any time.

Figure 5.7: User interface for operator intervention system. On-site operator can
control remote operation through EPICS PVs with this UI.

5.6.5 Security for WebSocket-side

The author ensures secure WebSocket access to the accelerator network from the WAN

using a VPN and authentication with SSL. In addition, accelerator operators have to

comprehensively verify a user (via login ID) that seeks access to the network and access

route (e.g., full domain of Internet providers, etc.) before WebSocket control is allowed.
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5.7 Similar System

A new wide area remote control system (WARCS) with a concept similar to the proposed

operator intervention system was implemented at SPring-8 in 2012 [94]. At SPring-8, an

old version of WARCS that uses Zebedee, a tunneling tool via VPN, was implemented for

remote maintenance via WAN [95]. However, the system has the following limitations.

1. In some cases of network routing, WARCS cannot ensure the network port used

by Zebedee.

2. To use a Zebedee-based VPN for WARCS, a dedicated client terminal is necessary.

To solve these limitations, WARCS was upgraded using SSL-VPN, which is one of

the standard cryptographic technologies. In addition to being used as a terminal for

typical PCs, the main characteristic of WARCS is that the on-site staff responsible for

the operation of the accelerator issue SSL-VPN accounts. Because intervention of on-

site staff is necessary for security, such a characteristic of the new WARCS is a concept

similar to the operator intervention system described in this chapter. A comparison

of the features of the new WARCS and the proposed operator intervention system are

summarized in Table 5.2.

Operator Intervention Sys-
tem

New WARCS

Object controlled by
on-site staff.

Control I/Os via Web-
Socket

VPN accounts

UI Web Web
Purpose Security for remote opera-

tion in EPICS-based con-
trol system.

Security for trouble shoot-
ing in control system at
SPring-8.

Table 5.2: Comparison of features between new WARCS and proposed operator in-
tervention system.
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System Implementation

The control system for the RIKEN 28 GHz SC-ECRIS consists of a distributed control

system based on EPICS and RIBF. To maintain beam quality for extended beam-service

time at RIBF, beam tuning is required in order to prevent subtle changes in 28 GHz

SC-ECRIS conditions. Once this is achieved, it should be possible to check conditions

and operate the ion source remotely at any time. The author has designed WebSocket-

based OPIs to control the ion source remotely; however, for access and control from

outside the facility, suitable access security, policies, and methods are required. There-

fore, the author implemented an operator intervention system that allows access to the

network safely from external sites with permission from on-site accelerator operators in

the control room.

6.1 Target Component for the Implementation

In this section, an ion source, which is a component of a heavy ion accelerator facility

such as RIBF, is described for implementation in this study.

6.1.1 RI-Beam Factory Project

To provide the world’s most intense radioisotope (RI) beams over the entire range of

atomic masses of heavy ions, the RIBF project was started at RIKEN [96, 97]. This

accelerator facility consists of four ring cyclotrons that include a superconducting ring

cyclotron, and two linear accelerators with Azimuthally Varying Field (AVF) cyclotrons

as injectors. In order to increase the energy of the heavy ion beams from the RIKEN

Ring Cyclotron (RRC: K 540 MeV) in the RARF project, three new ring cyclotrons-a

fixed-frequency ring cyclotron (fRC: K 570 MeV), an intermediate stage ring cyclotron
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(IRC: K 980 MeV), and a superconducting ring cyclotron (SRC: K2600 MeV) have been

updated in the RIBF project [98]. The schematic layout of the RIKEN RIBF is shown

in Fig. 6.1.

In the RIBF, variable heavy ion beams, from helium to uranium, have been provided

for experiments. However, the capability of the ion source has a decisive influence on

accelerator facility performance, such as beam intensity. Therefore, the ion source is one

of the most essential components that constitute the heavy ion accelerator facility.

Figure 6.1: Schematic layout for RIKEN RIBF. 28 GHz SC-ECRIS was constructed
in the injection line for RIBF at RIKEN.

6.1.2 Electron Cyclotron Resonance Ion Source

The kinetic energy per nucleon E of heavy ions accelerated by the cyclotron is repre-

sented by the following formula:

E = K(q/M)2 (6.1)

where K is an accelerator-specific value that is determined by the strength of the mag-

netic field and the size of the cyclotron, q is the valence, and M refers to the mass

number. In the above formula, in order to meet the demands of heavy ions with larger

kinetic energy, ion beams for which ’q/M ’ is larger (i.e., highly charged beams) are

required.

Currently, ECRIS is the best equipment that can provide stable direct current highly

charged beams for heavy ion accelerators [99]. The main components required for ECRIS

control are as follows.
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1. Material supply (gas, rod, oven, etc)

2. Ionization (plasma production)

3. Extraction

Heavy-ions are generated by introducing material supply in plasma using electron

cyclotron resonance, and the heavy-ions are extracted using an electric field (See Fig.

6.2). In RIBF, EPICS is used for these controls; the number of control points for 28

GHz SC-ECRIS is approximately 1,000 points EPICS records. In the next section, the

28 GHz SC-ECRIS, which is one of the ECRIS used in RIBF, is described.

Figure 6.2: Outline of the ECRIS.

6.1.3 28GHz SC-ECRIS

The performance of the ion source is an important factor in determining the overall

performance of a heavy ion accelerator. At the RIKEN RIBF, the 28 GHz SC-ECRIS

(see Fig. 6.3, 6.4) was constructed in 2009 in an effort to increase the uranium-ion beam

intensity [100, 101]. In reality, the stability of the beam is important in terms of beam

service availability for experiments at RIBF, and periodic fine-tuning of parameters such

as the RF power and gas pressure is required to ensure a high-intensity beam with long-

term stability. Therefore, it is common for ion source developers to telephone on-site

accelerator operators to check the status of the 28 GHz-SC-ECRIS when not present

at the facility. However, ion source developers could obtain more detailed information

regarding the status of the source, relay operational instructions, and maintain beam

quality if it were possible to access the control system from outside the facility.
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In addition, because the ion source includes all components (e.g., RF, vacuum, magnet,

and beam diagnostics) that compose the accelerator, it is suitable as a target for test

implementation of the operator intervention system and WebSocket-based OPIs via a

WAN link. Thereby, the author implemented WebSocket-based OPIs and an operator

intervention system for the 28 GHz SC-ECRIS control system.

Figure 6.3: Photograph of the RIKEN 28GHz SC-ECRIS.

6.2 Implementation Background

As described in Chapter 4, traditional Web applications that use AJAX lack the inter-

activity required to act as OPI for some accelerator hardware. However, the WebSocket

protocol can be implemented to improve interactive performance. This protocol achieves

bidirectional communication between a Web server and a browser, unlike the periodic

polling access of AJAX. Bidirectional communication can be utilized to develop an OPI

that can both monitor and control ion-source devices. Based on the description in

Section 4.6, the author has successfully developed a WebSocket-based client system to

monitor the real-time performance of the EPICS-based system via a Web browser.
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Figure 6.4: Section View of RIKEN 28GHz SC-ECRIS.

There are clear advantages to the developed client system; however, there are still some

problems that need to be addressed, namely, hazards associated with access via Web-

Socket and operator errors. Focusing on the latter, operator errors can arise because it

is difficult to provide a complete picture of the system status verbally over the telephone

(seeing RIBF parameters on control-room PC displays is of much greater benefit) and

because operating the 28 GHz SC-ECRIS without real-time response is difficult, even if

remote operators can access snapshots of the GUI screens as image files. To prevent op-

erator errors from occurring, accelerator conditions that include the 28 GHz SC-ECRIS

need to be understood in their entirety. Because accelerator operators in the control

room have the best understanding of the RIBF accelerator conditions, their judgment is

indispensable to ensure that devices are controlled safely. On-site accelerator operators

must then be allowed to intervene in remote operation. The WebSocket-based client

system is designed such that output control by the remote ion source developer always

requires the permission of an on-site accelerator operator who can intervene at any time.
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6.3 28GHz SC-ECRIS Control System

In this section, the control system of the 28 GHz SC-ECRIS in normal operation is

described for comparison with remote operation.

6.3.1 Outline of Control System for 28 GHz SC-ECRIS

Because the 28 GHz SC-ECRIS control system is based on EPICS as part of the RIBF

control system, the same network system is used as that for the RIBF control system. To

control the main devices, such as gas valves and rod position, in the 28 GHz SC-ECRIS,

a combination of a Yokogawa F3RP61-2L module that acts as an EPICS IOC and FA-M3

PLCs (Yokogawa Electric Corp.) are adopted with the embedded EPICS technology (see

Section 2.3.3). A vacuum control system and a beam diagnostic system are constructed

by EPICS using Linux-based IOCs connected with N-DIMs via Ethernet [102]. The

bending magnet control system comprises a VME-based IOC that communicates with

NIO [33]. The outline of the 28 GHz SC-ECRIS control system is shown in Fig. 6.5.

Figure 6.5: Outline of the 28GHz SC-ECRIS control system. Hardware dependent
protocols are unified by CA protocol.

6.3.2 Client System

To facilitate information exchange among different types of controllers, the protocol for

controllers such as FA-M3, N-DIMs, and NIOs is unified through a CA protocol from

the client’s perspective. A constructed x-y plotter chart that uses EDM as described in

Section 2.4.3.1 is shown as a client in Fig. 6.6. Because there are numerous parameters

related to the operation of the 28 GHz SC-ECRIS, maintaining records in a paper

notebook is not feasible. To save the 28 GHz SC-ECRIS parameters in an effective

manner, a paperless log system that uses wiki (see Fig. 6.7) is adopted. Wiki is a
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system that can edit and create hypertext documents on a Web server through a Web

browser; knowledge of HTML is not required in this case.

Using MyDAQ2 described in Section 3.2.3 as the DAQ system for the 28 GHz SC-

ECRIS, EPICS values such as vacuum, extraction current, and RF power are recorded

in the MySQL database every 10 s. Because graphics and text can be easily displayed in

Web browsers, the Web applications have a user-friendly GUI and a Wiki-based system.

DAQ based on MyDAQ2 can be used to reduce the turnaround time during system

construction.

To manage differences between terminals used in the accelerator control room and

remote locations, a cross-platform software environment should be adopted (for example,

less common software such as the X Window System might not necessarily be installed

on a remote computer, as it is on the control-room Linux PCs). In this regard, Web-

based technology has the advantage that any device with a browser, e.g., a PC, mobile

phone, tablet, or TV, can be used, and Web-based technology has been shown to be

useful for conveying status information from the 28 GHz SC-ECRIS control system.

Figure 6.6: An x-y plotter chart application constructed by EDM.

6.3.3 Network System

A closed network is more reliable for accelerator control from the perspective of infor-

mation security. The RIBF control system is also constructed on a closed network that
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Figure 6.7: Wiki page with a screen capture from the 28GHz SC-ECRIS main control
GUI panel.

is completely disconnected from all other networks, including laboratory Intranets used

for daily research activities [103]. In this network system, it is difficult for staff to obtain

parametric data, such as from the 28 GHz SC-ECRIS, from their offices because access

ports to the network for EPICS are not installed in the member’s offices. However, from

the perspective of system management and ease of system construction, Web communi-

cation is suitable for providing information as mentioned in Section 6.2.2. To meet this

requirement, a combined system with reverse proxy servers for Web communication and

a firewall was constructed for providing accelerator information to the office network

while ensuring secured access. Installation of reverse proxy servers in front of real Web

servers is a widely used prescription for security and caching.

In order to implement the system, reverse proxy servers and firewalls were constructed.

The outline of the system is shown in Fig. 6.8. The primary feature of the system is

that access from the office network are masked from the Web servers used for Wiki and

MyDAQ2 behind the reverse proxy servers.

Because it is possible to analyze data such as vacuum and gas pressure efficiently using

Web services from offices as well as the control room, the system has allowed more
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effective use of working time for 28 GHz SC-ECRIS operation [104]. An outline of the

routine work in 28 GHz SC-ECRIS operation and the relationship with Web services

are shown in Fig. 6.9.

Figure 6.8: Network diagram of Web communication via a reverse proxy server be-
tween office network and control system network.

Figure 6.9: After operation of the 28GHz SC-ECRIS in the control room, the data
are downloaded to office room via Web services for analysis and R&D.
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6.4 WebSocket-based client system for 28GHz SC-ECRIS

Control System

As described in Chapter 4, WebSocket enables interactive response using bidirectional

communication, thus eliminating the disadvantage of traditional HTML. Web browsers

such as Firefox, Chrome, and Internet Explorer can be used as a cross-platform envi-

ronment with the implementation of a WebSocket-based OPI. This allows the user to

access OPI not only from a PC-based Web browser, but also from other devices, such

as Android and Apple tablets and mobile phones. After satisfying the conditions for

interactive access to the EPICS-based system, the author implemented the WebSocket

server that connects to the EPICS IOC via CA protocol as a Web-based OPI for 28 GHz

SC-ECRIS operation. Figure 6.10 shows a chart of the whole system. The WebSocket-

based client system is comprised of an HTTP server, HTML and JavaScript files, and a

WebSocket server. The WebSocket server obtains the parameters as PVs from EPICS

IOC by calling the CA API.

Figure 6.10: System diagram of WebSocket-based OPI in EPICS-based control sys-
tem.
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6.5 Implementation Results

As described in Chapter 5, the operator intervention system consists mainly of a PV

gateway provided by EPICS collaboration, a database, and Web applications. An outline

of the implemented system is as follows. First, on-site accelerator operators grant per-

mission to each PV output that corresponds to the hardware of the 28 GHz SC-ECRIS

control system. If PVs have not been granted permission, the operator intervention

system always rejects the output command at the CA protocol layer. GUI for the

WebSocket-based OPI is shown in Fig. 6.11. Operation requests to on-site operators

are sent by clicking the buttons that correspond to the EPICS PVs. In addition, on-site

accelerator operators can check access logs for all remote operations with output devices

and monitor numerical values for the EPICS PVs.

Remote operation of the 28 GHz SC-ECRIS control system was tested using a WAN

emulator with remote users and on-site operators in the same control room, but accessing

different network environments [105] (see Fig. 6.12). The WAN emulator creates another

network with variable performance. As a result, the ion source developer was successfully

able to operate part of the 28 GHz SC-ECRIS (gas valves, RF power, position of an

electrode, and so on) remotely without serious problems.

Using this system, the author confirmed that output instructions did not reach the

EPICS IOC without permission from the on-site operator. In addition, remote operation

was performed satisfactorily with a network latency of 200 ms, which is approximately

the same network latency between Japan and the USA. Therefore, networking perfor-

mance tolerance should allow this system to be used over networks provided by almost

all Japanese Internet service providers [106].

The author has to note that “debugging” HTML and JavaScript programs proves to be

more important for preventing operational errors than other general Web applications.

In the case of EPICS native OPI coded in the C language, the compiler should verify

incomplete syntax of source codes. However, even when the HTML or JavaScript code

has a “bug”, the code can be run in a Web browser in some situations.
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Figure 6.11: User interface of WebSocket-based OPI. By clicking on buttons, opera-
tion requests are sent to the on-site operators.
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Figure 6.12: Test environment with another network-emulated WAN. Gray area in-
dicates implemented system.
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Discussion

7.1 Performance Measurement of WebSocket-based OPI

For comparison of performance in remote operation, network bandwidth was measured

for WebSocket-based OPI and AJAX-based OPI. In order to measure the network band-

width, OPIs for the 28 GHz SC-ECRIS operation that is described in Chapter 6 were

used. A feature of the WebSocket server developed with the Socket.IO library is that

the system behaves as AJAX access when a WebSocket-unsupported browser connects

to the WebSocket server. Utilizing the feature of Socket.IO, the difference in network

bandwidth obtained from accessing the system in two different ways, AJAX and Web-

Socket, were compared with the same OPI. In OPI, 30 numerical values, such as gas

valves positions, rod position, and extraction power supply, were monitored at intervals

of 0.1 s. Then, four numerical values for vacuum were monitored at intervals of 4 s. In

this paper, an example of a response through WebSocket and AJAX access is described

below.

1 5::/28 gecris/index :{"name":"ca","args":[{"gref_pwr_v":" -0.0325"}]}

Listing 7.1: Example of responce data in the WebSocket server.

The same data frame is received by the Web browser regardless of the difference in

access methods. First, the author measured latency in the case of AJAX access to OPI

using Wireshark [107], which is a network packet analyzer software. In the case of UI for

the remote operation of 28 GHz SC-ECRIS, the result of the AJAX-polling measurement

through LAN is a latency of 0.5 s that was observed on average upon one access.

In order to test in a network compatible with the network used for implementation of

the operator intervention system described in Chapter 5, a WAN emulator was used as

a measuring instrument.
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7.1.1 Network Bandwidth Measurement for WebSocket

In this study, to measure network bandwidth, a WAN emulator (Linktropy Mini2)

produced by Apposite Technologies, Inc. [108] was used. Across the WAN emulator,

LAN A shows the network of the virtual server side; LAN B shows the office network

(see Fig. 7.1). The author measured the bandwidth of WebSocket-based OPIs through

LAN using Google Chrome version 34 as the Web browser. The graph in 7.2 shows the

network bandwidth when a single client is connected to the WebSocket server to monitor

accelerator parameters.

The graph in Fig. 7.3 shows that the bandwidth requires 84.39 kbps with an average of

10 min from LAN A to LAN B in the case of a single client. On the other hand, network

bandwidth to LAN B from LAN A requires 22.42 kbps only with an average of 10 min.

Figure 7.1: Network chart for measuring network bandwidth.
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Figure 7.2: Graph of network traffic for WebSocket-based OPI.
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7.1.2 Network Bandwidth Measurement for AJAX

In the case of AJAX-based OPI, the network bandwidth was measured in terms com-

parable to the WebSocket-based OPI described in Section 6.5. Mozilla Firefox version

3.6.13 for Linux was adopted as the Web browser. The graph in Fig. 7.3 shows the net-

work bandwidth when a single client is connected to the WebSocket server with AJAX

to monitor accelerator parameters.

As shown in the graph, the bandwidth requires 42.0 kbps with an average of 10 min

from LAN A to LAN B in the case of AJAX access from a single client. On the other

hand, network bandwidth to LAN B from LAN A requires 83.51 kbps with an average

of 10 min.

Figure 7.3: Graph of network traffic for AJAX-based OPI.
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7.1.3 Network Bandwidth Measurement for X Window System

As described in Section 1.3.4, the X Window System is widely used for OPIs by exporting

GUIs to a remote computer in the case of Web technology. In reality, the main GUI

panel for the 28 GHz SC-ECRIS control is constructed with EDM provided by EPICS

collaboration (see Fig. 2.13). Because the specifications of the protocol are completely

different from each other, it is difficult to compare them directly. However, to confirm the

advantage of WebSocket-based OPIs, network bandwidth for EDM-based OPIs, which

are implemented for the 28 GHz SC-ECRIS daily operation, were measured. For the

X server, Cygwin-X that runs on Microsoft Windows was adopted, and the X client

(used by EDM installed in a virtualization server) is based on CentOS 5.9. This EDM-

based OPI has approximately the same number of monitored parameters compared with

WebSocket-based OPI for 28 GHz SC-ECRIS.

The graph in Fig. 7.4 shows the network bandwidth in the case of a single EDM-based

OPI. This graph shows that more than approximately 140 kbps is necessary as network

bandwidth to display the 28 GHz SC-ECRIS main GUI panel via the X Window System.

Figure 7.4: Graph of network traffic for OPI constructed with EDM based on X
Window System.
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7.1.4 Measurement Results

The measurement results from requests to the WebSocket server show that AJAX-based

OPI requires eight times more network bandwidth compared to WebSocket-based OPI.

However, AJAX-based OPI can receive only half the data volume that WebSocket-based

OPI receives. On the other hand, almost all the values to be monitored by EPICS IOC

are changed at intervals of 0.1 s (SCAN 0.1 second), and one AJAX communication

requires approximately 0.5 s to receive data in LAN after transmitting data requests.

Therefore, this means that a 0.5 s delay occurs regardless of LAN-links, and AJAX-based

OPI can receive only half of the data volume because timing of the AJAX transmission

is too slow compared with timing of the SCAN in EPICS IOCs.

Moreover, if this AJAX-based OPI is used via WAN-links, it is clear that the delay

increases. For this reason, for AJAX-based systems, although a large amount of network

bandwidth is necessary for transmitting requests, a few amount of data is received.

Thereby, AJAX-based OPI is an inefficient method compared to WebSocket-based OPI.

On the other hand, EDM-based network traffic shows that the network bandwidth for

data requests requires only approximately 13 kbps; however, a relatively large 140 kbps

is necessary to receive data. This is because an event for the X Window System is

not generated if the operator does not move a window or the mouse cursor, or clicks

the mouse. On the other hand, the X client sends packets to the X server to request

drawables. The network bandwidth for sending packets (from LAN A to LAN B) is

increased by the increase of CA events because requests for drawables are sent to the X

server by changing the record value on EPICS IOC.

As a result, AJAX-based OPI is not suitable for fast responses, such as “field(SCAN,“.1

second”),” in EPICS Runtime DB, and it is difficult to use EDM-based OPI using the X

Window System from WAN-links because data received for the X server is a large frame.

Thereby, the author considers that WebSocket-based OPI should be implemented for the

most efficient remote operation.
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7.2 Future Improvements of WebSocket-based OPI

As described in Section 4.5, the author developed Node-CA, which is interfaced between

CA and Node.js by calling CA API. However, the current version Node-CA implements

caMonitor, caGet, and caPut, which are the main functions of CA API. In particular,

functions related to arrays, such as the caGet array or the caPut array, were not im-

plemented in this study because these functions have no need for 28 GHz SC-ECRIS

control. In the future, it is necessary to update Node-CA for full implementation of

other EPICS-based applications coded in Node.js.

Moreover, existing GUI managers, such as CSS/BOY and MEDM, have strong points

in EPICS-based control systems, such as software productivity, because there is no need

to write code such as drawing software; therefore, it is possible to construct GUI appli-

cations for EPICS-based control systems. On the other hand, compared with the devel-

opment of X applications and Java Swing-based applications, there is a small amount,

but WebSocket-based OPI is necessary for coding in HTML in the case of this study. In

order to broaden the base of users who employ the WebSocket-based OPI, the author

would like to develop a display manager that supports WebSocket-based OPI.

The software that is a result of this study is expected to be released as open source

software in the near future.

7.3 Challenges for the future

For remote operation of accelerators, the author confirmed the effectiveness of WebSocket-

based OPI in Section 6.4. On the other hand, data archive systems are widely used for

daily accelerator operation in local control rooms. As described in Section 3.2.5, Web-

based systems are used for data archive viewers. In order to determine the cause of

accelerator conditions by comparing different types of archived data, data archive view-

ers are one of the frequently used applications in accelerator control systems.

However, there is an issue for using data archive viewers via remote operation because

the amount of data transfer increases if the search scope is spread. For example, a

considerable amount of time might be required to search and display a year’s worth

of vacuum data via WAN-links. In this case, the author considers that using machine

learning is an effective method for searching and transferring data via WAN-links.

In many cases, operators utilize data archivers to determine the time when data

changed and the amount by which such data changed, for example, vacuum values.
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Thus, if operators can determine the time when such data changed, it is possible to

reduce the amount of data transferred.

For this purpose, utilizing the framework of machine learning that has a function for

anomaly detection, such as Jubatus [109], will be a key point for constructing an effective

system.
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Conclusion

From the need for operation and maintenance, some accelerator research facilities have

studied wide area environments for remote operation since 2000. Such facilities adopted a

mechanism that requires considerable system resources, for example, dedicated networks

and special-purpose terminals, for this remote operation. The purpose of this study is

to perform the implementation of remote operation in control systems using EPICS as

middleware, even in environments with limited resources.

On the other hand, Web-based systems have multi-purpose potential in local area net-

works; therefore, some projects have attempted to develop OPI using traditional Web

technology, although their main purpose is to monitor accelerator parameters through

static access. However, Web-based OPI that uses traditional technology, such as AJAX,

is not always available for use in wide area environments because previous systems have

disadvantages in interactive performance. Thereby, the author proposed a hypothesis

that Web-based systems might be strong candidate methods for remote operation if the

shortcomings of traditional Web-based OPIs can compensated through this study. For

this reason, WebSocket-based OPIs for EPICS-based control systems and an operator

intervention system, which is a new approach compared with previous works, was de-

veloped in this study; moreover, the proposed WebSocket-based OPIs increase software

portability and reusability dramatically without damaging the advantage of Web-based

systems.

In addition, local control rooms have aggregated information; therefore, the judgment

of on-site operators is extremely important from the perspective of safety systems. To

solve this issue in remote operation via WebSocket, the author discussed the develop-

ment and implementation of an operator intervention system for remote operation using

WebSocket-based OPIs. This intervention system ensures that operational errors are

minimized and that the accelerator is operated safely during remote operation. Because
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the system was implemented for RIKEN 28 GHz SC-ECRIS remote operation, the au-

thor confirmed that this new operator intervention system via WebSocket-based OPIs

is a useful method for ensuring the physical security of operational errors.

On the other hand, remote participation according to a multi triangle-model and the

GAN operational model, which is an extensive remote operation of the facility, were dis-

cussed for the GAN project. The GAN operational model means a relationship between

accelerator control rooms, accelerator technical infrastructure, and home laboratories for

collaboration; such a relationship is required for the effective direction of significantly

large physics projects, such as ILC.

• In virtual accelerator control rooms, multiple operators from the operation team

are deployed.

• For repair and maintenance, the accelerator technical infrastructure located near

to the accelerator is used by a small core team.

• Experienced staff (or teams) work in technical monitoring, fault analysis, R&D,and

planning of repair and maintenance in home laboratories.

Figure 8.1: Remote operation model using WebSocket and operator intervention
system in this study.

One of the continued efforts of the GAN project, efficient communication protocols

such as remote method invocation and messaging services, was discussed. On the other

hand, WebSocket-based OPIs and the operator intervention system were successfully

implemented for the remote operation of 28 GHz SC-ECRIS control system in this
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study. As shown in Fig. 8.1, this system consists of a counterpart system based on the

GAN operational model, although the system scale is much different between the GAN

model and the 28 GHz SC-ECRIS remote operation.

Therefore, the proposed method, which combines HTTP and WebSocket, is a primary

candidate as the communication layer used on the Internet for remote operation. Because

of advantages in traditional implementation and new implementation with WebSocket,

remote operation needs to be realized through a suitable approach that uses both the

HTTP and WebSocket protocols. For example, for implementation ease, traditional Web

applications should be adapted if a fast response is not required for remote operation.

For these reasons, a combination of HTTP and WebSocket, and the on-site operator

intervention are essential methods for remote operation.

Finally, the author hopes that this system concept and system design become part

of the absolutely necessary features of standard models for control systems in future

accelerator projects.
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Source Code

B.1 Channel Access for Node.js

B.1.1 nodeca.cc

1 //======================================================================//

2 // 2012 -04 -03 [ A. UCHIYAMA ] //

3 // File: nodeca.cc ver .0.3.2 //

4 // The Graduate University for Advanced Studies (KEK) //

5 // mailto:akito12@gmail.com //

6 // Required node.js version is v0 .6.11 or later. //

7 //======================================================================//

8 #include <queue >

9

10 // node headers

11 #include <v8.h>

12 #include <node.h>

13 #include <uv -private/ev.h>

14 #include <pthread.h>

15 #include <unistd.h>

16

17 #include <stddef.h>

18 #include <stdlib.h>

19 #include <stdio.h>

20 #include <string.h>

21 #include <cstring >

22

23 //EPICS

24 #include "cadef.h"

25 #define MAX_BUF_LEN 512

26

27 using namespace node;

28 using namespace v8;

29

30

31 // handles required for callback messages

95
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32 static pthread_t thread_id;

33 static ev_async eio_tcamonitor_notifier;

34

35 Persistent <String > callback_symbol;

36 Persistent <Object > module_handle;

37

38 std::queue <char*> msg_queue = std::queue <char*>();

39 pthread_mutex_t queue_mutex = PTHREAD_MUTEX_INITIALIZER;

40

41 struct thread_data{

42 const char *_time;

43 const char *_pv;

44 chid _channelId;

45 };

46

47 const char* ToCString(v8:: String :: Utf8Value& value) {

48 return *value ? *value : "<string conversion failed >";

49 }

50

51 //------------------------//

52 // caGet method //

53 //------------------------//

54 Handle <Value > caGet (const Arguments& args) {

55 HandleScope scope;

56 const char *usage = "usage: caget(record_name)";

57 if( args.Length () != 1 || !args[0]-> IsString () ){

58

59 printf ("node -ca: %s \n",usage);

60 return ThrowException(Exception ::Error(String ::New("Node -ca: Bad

argument.")));

61 }

62 v8:: String :: Utf8Value str(args [0]);

63

64 //EPICS Channel Access using C lang

65 double dData;

66 int iData;

67 char sData [128];

68 double *adData;

69 chid node_chid;

70 int status , result;

71 SEVCHK(ca_context_create (ca_disable_preemptive_callback),"ca_context_create

failure");

72 SEVCHK(ca_create_channel (*str , NULL , NULL , 10, &node_chid),"ca_create_channel

failure");

73 status = ca_pend_io (5.0);

74 if (status != ECA_NORMAL){

75 return ThrowException(Exception ::Error(String ::New("Node -ca: Channel connect

timed out.")));

76 }

77

78 switch (ca_field_type (node_chid)){

79 case DBR_ENUM:

80 case DBR_CHAR:

81 case DBR_STRING:

82 result = ca_get (DBR_STRING , node_chid , (void *)&sData);
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83 status = ca_pend_io (.5);

84 if (status != ECA_NORMAL){

85 return ThrowException(Exception ::Error(String ::New("Node -ca: Channel

connect timed out.")));

86 }

87 return String ::New(sData);

88 break;

89

90 case DBR_DOUBLE:

91 case DBR_FLOAT:

92 result=ca_get(DBR_DOUBLE ,node_chid ,(void *)&dData);

93 if(result != ECA_NORMAL ){

94 return ThrowException(Exception ::Error(String ::New("Node -ca: ca_get Failure

.")));

95 }

96 status = ca_pend_io (.5);

97 if (status != ECA_NORMAL){

98 free (adData);

99 return ThrowException(Exception ::Error(String ::New("Node -ca: Channel

connect timed out.")));

100 }

101 return Number ::New(( double)dData);

102 break;

103

104 case DBR_SHORT:

105 case DBR_LONG:

106 SEVCHK(ca_get (DBR_LONG , node_chid , (void *) &iData),"ca_get failure");

107 status = ca_pend_io (.5);

108 if (status != ECA_NORMAL){

109 return ThrowException(Exception ::Error(String ::New("Node -ca: Channel

connect timed out.")));

110 }

111 return Number ::New((long)iData);

112 break;

113

114 case TYPENOTCONN:

115 return ThrowException(Exception ::Error(String ::New("Node -ca: Channel is not

connecting (TYPENOTCONN).")));

116 break;

117

118 default:

119 return ThrowException(Exception ::Error(String ::New("Node -ca: undefined type."

)));

120 }

121 return String ::New("OK");

122 }

123

124 //-----------------------//

125 // caPut method //

126 //-----------------------//

127 Handle <Value > caPut (const Arguments& args) {

128 HandleScope scope;

129 const char *usage = "usage: caput(record_name ,val)";

130 if( args.Length () != 2 || !args[0]-> IsString () ){

131
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132 printf ("node -ca: %s \n",usage);

133 return ThrowException(Exception :: Error(String ::New("Node -ca: Bad

argument.")));

134 }

135

136 v8:: String :: Utf8Value str1(args [0]);

137 v8:: String :: Utf8Value str2(args [1]);

138

139 char *wdata = *str2;

140 chid node_chid;

141 int status;

142 int success_val;

143

144 SEVCHK(ca_context_create(ca_disable_preemptive_callback),"ca_context_create

failure");

145 SEVCHK(ca_create_channel (*str1 ,NULL ,NULL ,10,& node_chid),"ca_create_channel

failure");

146 status = ca_pend_io (0.5);

147

148 if (status != ECA_NORMAL){

149 return ThrowException(Exception ::Error(String ::New("Node -ca: Channel connect

timed out.")));

150 }

151

152 success_val=ca_put(DBR_STRING ,node_chid ,(void *) wdata);

153 if (success_val != 1){

154 ca_context_destroy ();

155 return ThrowException(Exception ::Error(String ::New("Node -ca: ca_put failure."

)));

156 }

157 status = ca_pend_io (0.5);

158 if (status != ECA_NORMAL){

159 return ThrowException(Exception ::Error(String ::New("Node -ca: Channel connect

timed out.")));

160 }

161 ca_context_destroy ();

162 return String ::New("OK");

163 }

164

165 //---------------------------//

166 // camonitor method //

167 //---------------------------//

168

169 void monitorFunc( struct event_handler_args args ){

170 chid node_chid = args.chid;

171 char *pname = strdup(ca_name(node_chid));

172 char data[MAX_BUF_LEN ];

173

174 if(args.status != ECA_NORMAL) {

175 printf ("Node: Channel connect timed out \’%s\’ not found.\n", ca_name(

node_chid));

176 } else {

177 char *pdata = (char *)args.dbr;

178 sprintf(data ,"%s,%s",pname ,pdata);

179 pthread_mutex_lock (& queue_mutex);
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180 msg_queue.push(data);

181 pthread_mutex_unlock (& queue_mutex);

182 ev_async_send(EV_DEFAULT_UC_ &eio_tcamonitor_notifier);

183 }

184 }

185

186 // The background thread

187 static void* camonThread(void* p){

188 chid channelId;

189 struct thread_data *_pdata = (struct thread_data *)p;

190 const char *pv = _pdata ->_pv;

191 double timeout = atof(strdup(_pdata ->_time));

192 channelId = _pdata ->_channelId;

193

194 ca_context_create (ca_disable_preemptive_callback);

195 ca_create_channel (pv , NULL , NULL , 10, &channelId);

196 ca_pend_io (.05);

197 ca_add_event( DBR_STRING , channelId , monitorFunc , NULL , NULL );

198 ca_pend_event(timeout);

199 free(_pdata); // free malloc

200 // thread detach

201 pthread_detach(pthread_self ());

202 printf("Monitor record is finished .\n");

203 pthread_exit (0);

204 return NULL;

205 }

206

207 // callback that runs the javascript in main thread

208 static void Callback(EV_P_ ev_async *watcher , int revents)

209 {

210 HandleScope scope;

211 assert(watcher == &eio_tcamonitor_notifier);

212 assert(revents == EV_ASYNC);

213

214 Local <Value > callback_v = module_handle ->Get(callback_symbol);

215 if (!callback_v ->IsFunction ()) {

216 printf("Node -ca: Error not set Callback function\n");

217 return;

218 }

219 Local <Function > callback = Local <Function >:: Cast(callback_v);

220

221 // dequeue callback message

222 pthread_mutex_lock (& queue_mutex);

223 char *number = msg_queue.front();

224 msg_queue.pop();

225 pthread_mutex_unlock (& queue_mutex);

226

227 TryCatch try_catch;

228

229 // prepare arguments for the callback

230 Local <Value > argv [1];

231 argv [0] = Local <Value >::New(String ::New(number));

232

233 // call the callback and handle possible exception

234 callback ->Call(module_handle , 1, argv);
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235

236 if (try_catch.HasCaught ()) {

237 FatalException(try_catch);

238 }

239 }

240

241

242 // Start the background thread

243 Handle <Value > start_camon(const Arguments &args)

244 {

245 HandleScope scope;

246 struct thread_data *d;

247 if((d = (thread_data *) malloc(sizeof (*d)))==NULL){

248 return v8:: ThrowException(v8:: String ::New("Node -ca: Malloc thread error"));

249 }

250 const char *usage = "usage: camonitor(record_name ,val)";

251 v8:: String :: Utf8Value str(args [0]);

252 v8:: String :: Utf8Value cNum(args [1]);

253

254 if(*str == NULL){

255 printf ("node -ca: %s \n",usage);

256 return v8:: ThrowException(v8:: String ::New("Node -ca: Bad parameters"));

257 }

258

259 // EPICS record name , timeout

260 const char *pv = ToCString(str);

261 const char *time_out = ToCString(cNum);

262 d->_time = strdup(time_out);

263 d->_pv = strdup(pv);

264 ev_async_init (& eio_tcamonitor_notifier , Callback);

265 ev_async_start(EV_DEFAULT_UC_ &eio_tcamonitor_notifier);

266 ev_unref(EV_DEFAULT_UC);

267 // make thread

268 if(pthread_create (&thread_id , NULL , camonThread ,(void*)d) != 0){

269 perror("pthread_create");

270 }

271

272 return v8:: Undefined ();

273 }

274

275 void Initialize(Handle <Object > target)

276 {

277 HandleScope scope;

278 NODE_SET_METHOD(target , "camonitor", start_camon);

279 callback_symbol = NODE_PSYMBOL("callback");

280 // store handle for callback context

281 module_handle = Persistent <Object >::New(target);

282 NODE_SET_METHOD(target , "caget", caGet);

283 NODE_SET_METHOD(target , "caput", caPut);

284 }

285

286 extern "C" {

287 static void Init(Handle <Object > target){

288 Initialize(target);

289 }
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290 NODE_MODULE(nodeca , Init);

291 }

Listing B.1: Channel Access for Node.js.

B.1.2 wscript

1 srcdir = ’.’

2 blddir = ’build ’

3 VERSION = ’0.3.5’

4

5 def set_options(opt):

6 opt.tool_options(’compiler_cxx ’)

7

8 def configure(conf):

9 conf.check_tool(’compiler_cxx ’)

10 conf.check_tool(’node_addon ’)

11

12 # Library for EPICS

13 conf.env.CPPPATH = [’/usr/local/epics/base/include ’,’/usr/local/epics/base/

include/os/Linux’]

14 conf.check_cxx(lib=’cas’, libpath = ’/usr/local/epics/base/lib/linux -x86’)

15

16 def build(bld):

17 obj = bld.new_task_gen(’cxx’, ’shlib ’, ’node_addon ’)

18 obj.cxxflags = ["-g", "-D_FILE_OFFSET_BITS =64",

19 "-D_LARGEFILE_SOURCE", "-Wall"]

20 obj.target = ’nodeca ’

21 obj.source = "nodeca.cc"

22 obj.libpath=’/usr/local/epics/base/lib/linux -x86’

23 obj.lib = ’cas’

Listing B.2: Makefile to build as Node.js add-on.

B.1.3 ca subscription.js

1 /*!

2 * ca_subscription.js

3 * Copyright(c) 2012 A.UCHIYAMA in Sokendai University (KEK) <akito12@gmail.com >

4 * MIT Licensed

5 */

6 // Required Node.js v0.6.11 or later

7

8 var pv = require(’../ build/Release/nodeca ’);

9

10 var opts = require(’opts’);

11 opts.parse([

12 {

13 ’short’: ’p’,

14 ’long’: ’pv’,
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15 ’description ’: ’EPICS record name’,

16 ’value’: true ,

17 ’required ’: true

18 },

19 {

20 ’short’: ’t’,

21 ’long’: ’time’,

22 ’description ’: ’Monitor timeout ’,

23 ’value’: true ,

24 ’required ’: false

25 }

26 ]);

27

28 var record_name = opts.get(’pv’)

29 var timeout = opts.get(’time’)||0

30

31 pv.callback=function(v){

32 val=v.split(",");

33 process.send(val [1]);

34 }

35 pv.camonitor(record_name ,timeout);

Listing B.3: Use for event-driven function (caMonitor) using child process.

B.2 WebSocket Server for EPICS CA

B.2.1 app.js

1 /*!

2 * nodeca_app.js

3 * Copyright(c) 2012 A. UCHIYAMA in Sokendai University (KEK) <akito12@gmail.com >

4 * MIT Licensed

5 */

6 // Required Node.js v0.6.11 or later

7

8 /**

9 * Module dependencies.

10 */

11 var express = require(’express ’);

12 var socketio = require(’socket.io’);

13 var fs = require(’fs’);

14 var cp = require(’child_process ’);

15 var opts = require(’opts’);

16 var log4js = require(’log4js ’);

17

18 var use_SSL;

19 opts.parse([

20 {

21 ’short’ : ’s’,

22 ’long’ : ’ssl’,

23 ’description ’ : ’use SSL connection ’,
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24 ’value’ : false ,

25 ’required ’ : false

26 },

27 {

28 ’short’ : ’p’,

29 ’long’ : ’port’,

30 ’description ’ : ’port number ’,

31 ’value’ : true ,

32 ’required ’ : false

33 }

34 ]);

35

36

37 /**

38 * EPICS CA

39 */

40 var pv = require("./build/Release/nodeca");

41

42 /**

43 * SSL key

44 */

45 var SSL_KEY = ’privatekey.pem’;

46 var SSL_CERT= ’certificate.pem’;

47

48 /**

49 * Set Express

50 */

51 var PORT = opts.get(’port’) || 9000;

52 var HOME_DIR = ’/public ’;

53

54 var use_SSL = opts.get(’ssl’) || 0;

55 if(use_SSL == 1){

56 var app = express.createServer ({

57 key: fs.readFileSync(SSL_KEY).toString (),

58 cert : fs.readFileSync(SSL_CERT).toString ()

59 }

60 , express.basicAuth(authorize)

61 , express.logger ()

62 , express.static(__dirname + HOME_DIR));

63 console.log("Info : SSL is used.");

64 }else{

65 var app = express.createServer(

66 express.logger ()

67 , express.static(__dirname + HOME_DIR));

68 };

69

70 /**

71 * Output access log

72 */

73

74 app.configure(function (){

75 log4js.configure ({

76 ’appenders ’: [

77 { ’type’: ’console ’ },

78 {
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79 ’type’: ’file’,

80 ’filename ’: ’/mnt/websocketlogs/access.logs’,

81 ’maxLogSize ’: 1024 * 1024,

82 ’backups ’: 5,

83 ’category ’: [ ’project -name’, ’console ’ ],

84 },

85 ],

86 ’replaceConsole ’: true

87 });

88

89 var logger = log4js.getLogger(’project -name’);

90 app.use(log4js.connectLogger(logger , {

91 ’level’: log4js.levels.DEBUG ,

92 ’nolog’: [ ’\\css’, ’\\.js’, ’\\.gif’ ],

93 ’format ’: ’:remote -addr - - ": method :url HTTP/:http -version" :status :

content -length ": referrer" ":user -agent"’

94 }));

95 app.use(app.router);

96 });

97

98

99 /**

100 * Basic authentication

101 */

102 function authorize(username ,password){

103 return ’admin’ === username & ’admin’ === password;

104 }

105

106 // Open server port

107 app.listen(PORT);

108

109 var io = socketio.listen(app , {

110 // log level in socket.io

111 // 0 : Error

112 // 1 : warn

113 // 2 : info

114 // 3 : debug

115 ’log level’ : 1,

116 key : fs.readFileSync(SSL_KEY).toString (),

117 cert : fs.readFileSync(SSL_CERT).toString ()

118 });

119

120 var sublist = []; // for caSubscription

121 var intlist = []; // for caGet_interval

122 var interval_Idlist = []; // for intervalId of caGet_interval

123 var client_info = []; // for IPaddr:port of clients

124 var sock_names = [];

125

126 var caSubscription_count = 0;

127 var caGet_interval_count = 0;

128 var total_connection_count = 0;

129

130 var connection_address;

131 //var disconnect_address;

132
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133 fs.readdirSync(__dirname + HOME_DIR).forEach(function(filename){

134 function stat(filename){

135 var stats = fs.statSync(__dirname + HOME_DIR + ’/’ + filename);

136 return stats;

137 }

138

139 stats = stat(filename);

140

141 // Directory check & Files (.js, .html , .htm) check

142 extension1 = ’.js’;

143 extension2 = ’.html’;

144 extension3 = ’.htm’;

145

146 function check_extension(filename){

147 if(filename.lastIndexOf(extension1) == -1 &&

148 filename.lastIndexOf(extension2) == -1 &&

149 filename.lastIndexOf(extension3) == -1

150 ){

151 return -1

152 }else{

153 if(filename.lastIndexOf(’jquery ’) == -1){

154 return 1

155 }else{

156 return -1

157 }

158 }

159 }

160

161 if(stats.isDirectory ()){

162 dirname = filename;

163 sock_names.push(dirname);

164 stats = stat(dirname);

165

166 if(stats.isDirectory ()){

167 fs.readdirSync(__dirname + HOME_DIR + ’/’+ dirname).forEach(function(

filename){

168 if(check_extension(filename) == 1){

169 path_name = dirname;

170 path_name += "/";

171 path_name += filename.substr(0, filename.lastIndexOf(’.’));

172 sock_names.push(path_name);

173 }

174 });

175 }else{

176 if(check_extension(filename) == 1){

177 sock_names.push( filename.substr(0, filename.lastIndexOf(’.’)) );

178 }

179 }

180 }else{

181 if(check_extension(filename) == 1){

182 sock_names.push( filename.substr(0, filename.lastIndexOf(’.’)) );

183 }

184 }

185 });

186 sock_names = unique(sock_names)
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187

188 /**

189 * Set socket_main function

190 */

191 for (i = 0; i < sock_names.length; i++){

192 sock_name = sock_names[i];

193 io.of(’/’ + sock_names[i]).on(’connection ’, socket_main );

194 console.log( "Set NameSpace " + i + " : " + sock_name);

195 }

196 io.of(’’).on(’connection ’, socket_main);

197

198 function socket_main(socket ,data){

199 /**

200 * Store the information of connected clients

201 */

202 connection_address = socket.handshake.address;

203

204 client_info[total_connection_count] = "";

205 client_info[total_connection_count] += connection_address.address;

206 client_info[total_connection_count] += ":";

207 client_info[total_connection_count] += connection_address.port;

208 client_info[total_connection_count] += ",";

209 client_info[total_connection_count] += socket.id;

210 client_info[total_connection_count] += ",";

211 client_info[total_connection_count] += socket.namespace.name;

212

213 console.log("New connection from " + client_info[total_connection_count ]);

214 total_connection_count ++;

215

216 socket.on(’caPut’, function(data) {

217 caPut(socket ,data);

218 });

219

220 socket.on(’caGet’, function(data) {

221 process.nextTick(

222 function (){ caGet(socket ,data) }

223 );

224 });

225

226 socket.on(’caGet_interval ’, function(data) {

227 process.nextTick(

228 function (){ caGet_interval(socket ,data) }

229 );

230 });

231

232 socket.on(’caMonitor ’,function(data) {

233 process.nextTick(

234 function (){ caMonitor(socket ,data) }

235 );

236 });

237

238 /*******************************************************/

239 /* Enable under here if use Operator Intervening System */

240 /*******************************************************/

241 socket.on(’RequestOpe ’,function(data) {



Appendix B. Source Code 107

242 var n = cp.fork(

243 __dirname + ’/module/request ’,

244 [’-r’,data.pv ,’-u’,process.env.USER],

245 {env:process.env ,timeout:"1"}

246 );

247 });

248

249 socket.on(’OpeInfo ’,function(data) {

250 var n = cp.fork(

251 __dirname + ’/module/ope_info ’,

252 [’-r’,data.pv ,’-u’,process.env.USER , ’-s’,data.st],

253 {env:process.env ,timeout:"1"}

254 );

255

256 if(!data.event){

257 data.event = "ca";

258 }

259

260 n.on(’message ’,function(m){

261 var obj = {};

262 obj[data.data_name] = m;

263 socket.volatile.emit(data.event ,obj);

264 socket.volatile.broadcast.emit(data.event ,obj);

265 });

266

267 setTimeout(function (){

268 process.kill(n.pid , ’SIGHUP ’);

269 } ,1000);

270 });

271 /********************************************************/

272

273 socket.on(’caPut_counter ’, function(data) {

274 caPut_counter(socket ,data);

275 });

276

277 socket.on(’disconnect ’, function (){

278 var disconnect_sid = socket.id;

279 console.log("Disconnect:" + disconnect_sid);

280 process.nextTick(

281 function (){ do_disconnect(disconnect_sid) }

282 );

283 });

284 }

285

286 function caGet(socket ,data){

287 try{

288 v = pv.caget(data.pv);

289 }catch(e){

290 v = "undefined";

291 console.log("caGet : " + data.pv + " : " + e );

292 }

293 if(!data.event){

294 data.event = "ca";

295 }

296 if(typeof obj === "undefined"){
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297 var obj = {};

298 }

299 obj[data.data_name] = v;

300 socket.volatile.emit(data.event ,obj);

301 socket.volatile.broadcast.emit(data.event ,obj);

302 }

303

304 function caPutCallback(socket ,data){

305 try{

306 v = pv.caget(data.callback_pv);

307 }catch(e){

308 v = "undefined";

309 console.log("caGet Error :" + e);

310 }

311 if(!data.event){

312 data.event = "ca";

313 }

314 if(typeof obj === "undefined"){

315 var obj = {};

316 }

317 obj[data.callback_obj] = v;

318 socket.volatile.emit(data.event ,obj);

319 socket.volatile.broadcast.emit(data.event ,obj);

320 }

321

322 function caFailCallback(socket ,data){

323 if(!data.event){

324 data.event = "ca";

325 }

326 v = "caPut_failuer";

327 if(typeof obj === "undefined"){

328 var obj = {};

329 }

330 obj[data.callback_obj] = v;

331 socket.volatile.emit(data.event ,obj);

332 socket.volatile.broadcast.emit(data.event ,obj);

333 }

334

335 function caSuccessCallback(socket ,data){

336 if(!data.event){

337 data.event = "ca";

338 }

339 v = "caPut_Success";

340 if(typeof obj === "undefined"){

341 var obj = {};

342 }

343 obj[data.callback_obj] = v;

344 socket.volatile.emit(data.event ,obj);

345 socket.volatile.broadcast.emit(data.event ,obj);

346 }

347

348 function caPut(socket ,data){

349 process.nextTick(function (){

350 try{

351 pv.caput(data.pv ,data.val);
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352

353 if(data.callback_pv){

354 caPutCallback(socket ,data);

355 }

356 if(data.data_name){

357 setTimeout(caGet(socket ,data) ,1000);

358 }

359 if(data.callback_obj && !data.callback_pv){

360 caSuccessCallback(socket ,data);

361 }

362 }catch(e){

363 if(data.callback_obj){

364 caFailCallback(socket ,data);

365 }

366 console.log("caPut : " + data.pv + " : " + e );

367 }

368 });

369 }

370

371 function caMonitor(socket , data){

372 /**

373 * Check the sublist array for caSubscription function

374 * run_flag = 0; Run caSubscription

375 * run_flag = 1; Already run

376 */

377 if(!data.timeout){

378 data.timeout="0";

379 }

380 if(!data.event){

381 data.event = "ca";

382 }

383

384 if(data.timeout == "0"){

385 str_sublist = "";

386 str_sublist += data.event;

387 str_sublist += ",";

388 str_sublist += data.pv;

389 str_sublist += ",";

390 str_sublist += data.timeout;

391 str_sublist += ",";

392 str_sublist += data.data_name;

393 str_sublist += ",";

394 str_sublist += socket.namespace.name;

395 }else{

396 var PID_id = caSubscription(socket ,data);

397 }

398

399 run_flag = 0;

400 for (j = 0; j < sublist.length; j++){

401 if(sublist[j]. indexOf(str_sublist) !== -1){

402 run_flag = 1;

403 sublist[j] += ",";

404 sublist[j] += socket.id;

405 console.log("Already running: caMonitor:" + j + ":" + sublist[j]);

406 break;
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407 }

408 }

409

410 if (run_flag == 0){

411 var PID_id = caSubscription(socket ,data);

412 // Concatennate 1. pv, 2. timeout , 3. data_name , 4. name_space , 5. PID_id

413 str_sublist += ",";

414 str_sublist += PID_id;

415 str_sublist += "|";

416 str_sublist += socket.id;

417 sublist[caSubscription_count] = str_sublist;

418 console.log("caMonitor:" + caSubscription_count + ":" + sublist[

caSubscription_count ]);

419 caSubscription_count ++;

420 }

421 }

422

423 function caSubscription(socket ,data){

424 var n = cp.fork(

425 __dirname + ’/module/ca_subscription ’,

426 [’-p’,data.pv ,’-t’,data.timeout],

427 {env:process.env ,timeout:data.timeout}

428 );

429

430 if( data.timeout != "0" ){

431 setTimeout(

432 function (){

433 stop_caMonitor(n.pid);

434 },

435 data.timeout * 1000

436 );

437 }

438

439 if(!data.event){

440 data.event = "pv";

441 }

442 var sid = socket.id;

443 n.on(’message ’,function(m){

444 var obj = {};

445 obj[data.data_name] = m;

446 socket.volatile.emit(data.event ,obj);

447 socket.volatile.broadcast.emit(data.event ,obj);

448 });

449 return n.pid;

450 }

451

452 function caGet_interval(socket ,data){

453

454 if(!data.int_sec){

455 data.int_sec = 1;

456 var interval_time =1000;

457 }else{

458 var interval_time=data.int_sec * 1000;

459 }

460
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461 if(!data.event){

462 data.event = "ca";

463 }

464

465 str_intlist = "";

466 str_intlist += data.event;

467 str_intlist += ","

468 str_intlist += data.pv;

469 str_intlist += ",";

470 str_intlist += data.int_sec;

471 str_intlist += ",";

472 str_intlist += data.data_name;

473 str_intlist += ",";

474 str_intlist += socket.namespace.name;

475

476 var event = data.event;

477

478 function caget_int (){

479 try{

480 v = pv.caget(data.pv);

481 }catch(e){

482 console.log("caGet : " + data.pv + " : " + e );

483 v = ’undefined ’;

484 }

485 var obj = {};

486 obj[data.data_name] = v;

487 socket.volatile.emit(data.event ,obj);

488 socket.volatile.broadcast.emit(data.event ,obj);

489 }

490

491 run_flag = 0;

492 for (j = 0; j < intlist.length; j++){

493

494 if(intlist[j]. indexOf(str_intlist) !== -1){ // Not include == -1

495 run_flag = 1;

496 intlist[j] += ",";

497 intlist[j] += socket.id;

498 console.log("Already running: caGet_interval:" + j + ":" + intlist[j]);

499 break;

500 }

501

502 }

503

504 if (run_flag == 0){

505 interval_Id = setInterval(caget_int , interval_time);

506 interval_Idlist[caGet_interval_count] = interval_Id;

507 str_intlist += ",";

508 str_intlist += "|";

509 str_intlist += socket.id;

510 intlist[caGet_interval_count] = str_intlist;

511 console.log("caGet_interval:" + caGet_interval_count + ":" + intlist[

caGet_interval_count ]);

512 caGet_interval_count ++;

513 }

514 return interval_Id;
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515 }

516

517 function do_disconnect(disconnect_sid){

518

519 client_sid = [];

520 for (j = 0; j < sublist.length; j++){

521 str_sid = "";

522 client_sids = sublist[j].split("|");

523 if(client_sids [1]){

524 client_sid = client_sids [1]. split(",");

525 }

526 for (m = 0; m < client_sid.length; m++){

527 if(client_sid[m] !== disconnect_sid && client_sid[m] !== ""){

528 str_sid += client_sid[m];

529 str_sid += ",";

530 }

531 }

532

533 if(sublist[j]){

534 client_sids = sublist[j].split("|");

535 sublist[j] = client_sids [0];

536 sublist[j] += "|";

537 sublist[j] += str_sid;

538

539 if(! str_sid){

540 // pv_data : 0. event , 1.pv , 2.timeout , 3.data_name , 4. PID_id

541 pv_data=client_sids [0]. split(",");

542 stop_caMonitor(pv_data [5]);

543 sublist[j] = "";

544 }

545 }

546 }

547

548 str_sid = "";

549 client_sid = [];

550 for (j = 0; j < intlist.length; j++){

551 client_sids = intlist[j].split("|");

552 if(client_sids [1]){

553 client_sid = client_sids [1]. split(",");

554 }

555 }

556

557 for (j = 0; j < client_sid.length; j++){

558 if(client_sid[j] !== disconnect_sid && client_sid[j] !== ""){

559 str_sid += client_sid[j];

560 str_sid += ",";

561 }

562 }

563

564 for (j = 0; j < intlist.length; j++){

565 if(intlist[j]){

566 client_sids = intlist[j].split("|");

567 intlist[j] = client_sids [0];

568 intlist[j] += "|";

569 intlist[j] += str_sid;
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570

571 if(! str_sid){

572 // pv_data : 0.event , 1.pv, 2.timeout , 3.data_name , 4. intervalId

573 stop_caGet_interval(interval_Idlist[j]);

574 intlist[j] = "";

575 }

576 }

577 }

578 }

579

580 function stop_caMonitor(PID_id){

581 process.kill(PID_id , ’SIGHUP ’);

582 console.log("LOG: child_process.kill : " + PID_id);

583 return 0;

584 }

585

586 function stop_caGet_interval(Id_obj){

587 clearInterval(Id_obj);

588 console.log("LOG: clearInterval ");

589 return 0;

590 }

591

592 function caPut_counter(socket ,data){

593 try{

594 v = pv.caget(data.pv);

595 }catch(e){

596 console.log("caGet : " + data.pv + " : " + e );

597 v = ’undefined ’;

598 return 0

599 }

600 try{

601 if(v !== null && v !== undefined && !isNaN(v)){

602 pv.caput(data.pv ,v+data.val);

603 }

604 if(data.callback_pv){

605 caPutCallback(socket ,data);

606 }

607 }catch(e){

608 if(data.callback_pv){

609 caFailCallback(socket ,data);

610 }

611 console.log("caPut_counter : " + data.pv + " : " + e );

612 }

613 }

614

615 function unique(array) {

616 var storage = {};

617 var uniqueArray = [];

618 var i,value;

619 for ( i=0; i<array.length; i++) {

620 value = array[i];

621 if (!( value in storage)) {

622 storage[value] = true;

623 uniqueArray.push(value);

624 }
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625 }

626 return uniqueArray;

627 }

Listing B.4: WebSocket Server coded in Node.js and Socket.IO (server-side

javascript).

B.3 Example of WebSocket Client for EPICS CA

B.3.1 index.html

1 <html >

2 <head >

3 <title >ca-WebSocket example page </title >

4 <link rel="stylesheet" type="text/css" href="index.css" />

5 <script type="text/javascript" src="/socket.io/socket.io.js"></script >

6 <script type="text/javascript" src="/flot/jquery.js"></script >

7 <script type="text/javascript" src="./index.js"></script >

8 </head >

9 <body >

10 <h4>Record information with realtime update (camonitor written in Node.js) </

h4>

11 <div id="EPICS2">

12 <p>PV: akito12Host:ai1 (caMonitor): <span id="TEST_record1"></p>

13 <p>PV: akito12Host:aiExample (caMonitor): <span id="TEST_record2"></p>

14 <p>PV: akito12Host:aiExample1 (caGet): <span id="TEST_record3"></p>

15 </div >

16

17 <div id="EPICS">

18 <p>PV: akito12Host:xxxExample <span id="TEST_record4"></p>

19 <li><a id="caput -update1" href="#" onclick="caput_update1 ()">caPut

akito12Host:xxxExample 1</a>

20 <br>

21 <li><a id="caput -update2" href="#" onclick="caput_update2 ()">caPut

akito12Host:xxxExample 0</a>

22 </div >

23 <div id="CALLBACK">

24 <p>CALLBACK: <span id="LOG"></p>

25 </div >

26 </body >

27 </html >

Listing B.5: Example of WebSocket Client for EPICS Channel Access (html file)

B.3.2 index.js

1 var socket = io.connect(’/index ’);

2 function callback_func(obj ,msg){
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3 $(obj).html(msg);

4 }

5

6 socket.emit(’caMonitor ’,{pv: ’rootHost:aiExample1 ’, data_name: ’TEST_record1 ’});

7 socket.emit(’caMonitor ’,{pv: ’rootHost:aiExample1 ’, data_name: ’TEST_record2 ’});

8 socket.emit(’caGet ’,{pv: ’rootHost:aiExample1 ’, data_name: ’TEST_record3 ’});

9 caput_update1 = function () {

10 socket.emit(’caPut ’,{

11 pv: ’rootHost:xxxExample ’,

12 val: 199,

13 data_name: ’TEST_record4 ’,

14 callback_pv: ’rootHost:aiExample2 ’,

15 callback_obj: ’TEST_callback1 ’

16 },callback_func(’#LOG’,’<font color=red > Data set 1 !!</font >’));

17 }

18

19 caput_update2 = function () {

20 socket.emit(’caPut ’,{

21 pv: ’rootHost:xxxExample ’,

22 val: 0,

23 data_name: ’TEST_record4 ’,

24 // callback_pv: ’rootHost:aiExample2 ’,

25 callback_obj: ’TEST_callback1 ’

26 },callback_func(’#LOG’,’<font color=green > Data set 0 ..</font >’));

27 }

28

29

30 socket.on(’ca’, function(data){

31 $(’#TEST_record1 ’).html(data.TEST_record1);

32 $(’#TEST_record2 ’).html(data.TEST_record2);

33 $(’#TEST_record3 ’).html(data.TEST_record3);

34 $(’#TEST_record4 ’).html(data.TEST_record4);

35 if(data.TEST_callback1 !== undefined) console.log("!!" + data.TEST_callback1

+ "!!");

36 });

Listing B.6: Example of WebSocket Client for EPICS Channel Access (client-side

javascript)

B.4 Operator Intervention System

B.4.1 accept.js

1 /*!

2 * accept.js

3 * Copyright(c) 2013 A. UCHIYAMA in Sokendai University (KEK) <akito12@gmail.com >

4 * MIT Licensed

5 *

6 */

7

8 /**
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9 * Module dependencies.

10 */

11 var mysql = require(’mysql ’);

12 var conf = require(’./conf’);

13 var opts = require(’opts’);

14

15 opts.parse([

16 {

17 ’short’ : ’v’,

18 ’long’ : ’version ’,

19 ’description ’ : ’Show version and exit’,

20 ’callback ’ : function () { console.log(’v1.0’); process.exit (1); }

21 },

22 {

23 ’short’ : ’i’,

24 ’long’ : ’id’,

25 ’description ’ : ’record id for MySQL table’,

26 ’value’ : true ,

27 ’required ’ : true

28 },

29 {

30 ’short’ : ’o’,

31 ’long’ : ’operator ’,

32 ’description ’ : ’Set operator name’,

33 ’value’ : true ,

34 ’required ’ : true

35 },

36 /*

37 {

38 ’short’ : ’r’,

39 ’long’ : ’pv’,

40 ’description ’ : ’request EPICS record ’,

41 ’value’ : true ,

42 ’required ’ : false

43 },

44 */

45 {

46 ’short’ : ’t’,

47 ’long’ : ’time’,

48 ’description ’ : ’reserved time’,

49 ’value’ : true ,

50 ’required ’ : false

51 }

52 ]);

53

54 var connection = mysql.createConnection ({

55 host : conf.MYSQL_HOST ,

56 user : conf.MYSQL_USER ,

57 password : conf.MYSQL_PASS ,

58 database : conf.DATABASE ,

59 insecureAuth: true

60 });

61

62 var TABLE = ’ope_request ’;

63 var _id = opts.get(’id’);
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64 var _ope = opts.get(’operator ’);

65

66 if (!opts.get(’time’)){

67 var _time = 120;

68 }else{

69 var _time = opts.get(’time’);

70 }

71

72 console.log("Record id:" + _id);

73 console.log("Operator:" + _ope);

74 console.log("Reserved time:" + _time);

75

76 var nowdate = new Date();

77

78 var post = {

79 ope_name: _ope ,

80 ope_allowed_time: nowdate ,

81 reserved_sec: _time ,

82 status: 1

83 }

84 connection.query(

85 ’UPDATE ’ + TABLE + ’ SET ? where id = ’ + _id + ’ and status = 0’,

86 post ,

87 function(err , result) {

88 if (err) {

89 console.log(’database update error ’);

90 console.log(err);

91 connection.destroy ();

92 }else{

93 console.log(result);

94 connection.end();

95 }

96 }

97 );

Listing B.7: Insert accept command into MySQL-based database for operation with

output.

B.4.2 conf.js

1 module.exports = {

2 MYSQL_HOST: ’RDB -srv’,

3 DATABASE: ’access_data ’,

4 TABLE: ’ope_request ’,

5 MYSQL_USER: ’xxx’,

6 MYSQL_PASS: ’xxxxxx ’

7 };

B.4.3 end.js
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1 /*!

2 * end.js

3 * Copyright(c) 2013 A. UCHIYAMA in Sokendai University (KEK) <akito12@gmail.com >

4 * MIT Licensed

5 *

6 */

7

8 /**

9 * Module dependencies.

10 */

11 var mysql = require(’mysql ’);

12 var conf = require(’./conf’);

13 var opts = require(’opts’);

14

15 opts.parse([

16 {

17 ’short’ : ’v’,

18 ’long’ : ’version ’,

19 ’description ’ : ’Show version and exit’,

20 ’callback ’ : function () { console.log(’v1.0’); process.exit (1); }

21 },

22 {

23 ’short’ : ’i’,

24 ’long’ : ’id’,

25 ’description ’ : ’record id for MySQL table’,

26 ’value’ : true ,

27 ’required ’ : true

28 },

29 {

30 ’short’ : ’o’,

31 ’long’ : ’operator ’,

32 ’description ’ : ’Set operator name’,

33 ’value’ : true ,

34 ’required ’ : true

35 },

36 /*

37 {

38 ’short’ : ’r’,

39 ’long’ : ’pv’,

40 ’description ’ : ’request EPICS record ’,

41 ’value’ : true ,

42 ’required ’ : false

43 },

44 */

45 {

46 ’short’ : ’t’,

47 ’long’ : ’time’,

48 ’description ’ : ’reserved time’,

49 ’value’ : true ,

50 ’required ’ : false

51 }

52 ]);

53

54 var connection = mysql.createConnection ({
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55 host : conf.MYSQL_HOST ,

56 user : conf.MYSQL_USER ,

57 password : conf.MYSQL_PASS ,

58 database : conf.DATABASE ,

59 insecureAuth: true

60 });

61

62 var TABLE = ’ope_request ’;

63 var _id = opts.get(’id’);

64 var _ope = opts.get(’operator ’);

65

66 if (!opts.get(’time’)){

67 var _time = 120;

68 }else{

69 var _time = opts.get(’time’);

70 }

71

72 console.log("Record id:" + _id);

73 console.log("Operator:" + _ope);

74

75 var nowdate = new Date();

76

77 var post = {

78 ope_endtime: nowdate ,

79 status: 2

80 }

81

82 connection.query(

83 ’UPDATE ’ + TABLE + ’ SET ? where id = ’ + _id + ’ and status = 1 and ope_name

= \’’+ _ope + ’\’’,

84 post ,

85 function(err , result) {

86 if (err) {

87 console.log(’database update error ’);

88 console.log(err);

89 connection.destroy ();

90 }else{

91 console.log(result);

92 connection.end();

93 }

94 }

95 );

Listing B.8: Insert end command into MySQL-based database for timeout.

B.4.4 request.js

1 /*!

2 * request.js

3 * Copyright(c) 2013 A. UCHIYAMA in Sokendai University (KEK) <akito12@gmail.com >

4 * MIT Licensed

5 *

6 */
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7

8 /**

9 * Module dependencies.

10 */

11 var mysql = require(’mysql ’);

12 var conf = require(’./conf’);

13 var opts = require(’opts’);

14

15 opts.parse([

16 {

17 ’short’ : ’v’,

18 ’long’ : ’version ’,

19 ’description ’ : ’Show version and exit’,

20 ’callback ’ : function () { console.log(’v1.0’); process.exit (1); }

21 },

22 {

23 ’short’ : ’u’,

24 ’long’ : ’user’,

25 ’description ’ : ’Set user name’,

26 ’value’ : true ,

27 ’required ’ : true

28 },

29 {

30 ’short’ : ’r’,

31 ’long’ : ’pv’,

32 ’description ’ : ’request EPICS record ’,

33 ’value’ : true ,

34 ’required ’ : true

35 }

36 ]);

37

38 var connection = mysql.createConnection ({

39 host : conf.MYSQL_HOST ,

40 user : conf.MYSQL_USER ,

41 password : conf.MYSQL_PASS ,

42 database : conf.DATABASE ,

43 insecureAuth: true

44 });

45

46 var TABLE = ’ope_request ’;

47 var _user = opts.get(’user’);

48 var _pv = opts.get(’pv’);

49

50 console.log("User:" + _user);

51 console.log("PV:" + _pv);

52 var nowdate = new Date();

53

54 var post = {

55 user_name: _user ,

56 request_record: _pv ,

57 request_time: nowdate ,

58 status: 0

59 }

60

61 connection.query(
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62 ’INSERT INTO ’ + TABLE + ’ SET ?’,

63 post ,

64 function(err , result) {

65 if (err) {

66 console.log(’database insert error ’);

67 console.log(err);

68 connection.destroy ();

69 }else{

70 console.log(result);

71 connection.end();

72 }

73 }

74 );

Listing B.9: Insert request command into MySQL-based database for output

operation request.

B.4.5 pooling.js

1 var mysql = require(’mysql ’);

2 var conf = require(’./conf’);

3

4 var pool = mysql.createPool ({

5 host : conf.MYSQL_HOST ,

6 user : conf.MYSQL_USER ,

7 password : conf.MYSQL_PASS ,

8 database : conf.DATABASE ,

9 insecureAuth: true

10 });

11 var TABLE = ’ope_request ’;

12

13 pool.getConnection(function(err ,connection){

14 connection.query(’select * from ’ + TABLE , function(err , result , fields) {

15 if (err) throw err;

16 else {

17 console.log(’----------------------------------’);

18 for (var i in result) {

19 var val = result[i];

20 console.log(

21 val.id +’: ’

22 + val.user_name + ’:’

23 + val.request_time + ’:’

24 + val.status

25 );

26 }

27 }

28 connection.end();

29 });

30 });

Listing B.10: Check the operation flag in MySQL-based database.
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B.4.6 main.php

1 <?php

2 /* 2013 -07 -09 [A.UCHIYAMA] */

3 /* file: main.php */

4 require("./ session_check.php");

5 ?>

6

7 <!DOCTYPE html >

8 <html lang="ja">

9 <head >

10 <meta charset="utf -8">

11 <title > Operator Intervening System &middot; Powered by Bootstrap </title >

12 <meta name="viewport" content="width=device -width , initial -scale =1.0">

13 <meta name="description" content="">

14 <meta name="author" content="A.UCHIYAMA">

15

16 <!-- Le styles -->

17 <link href="../ docs/assets/css/bootstrap.css" rel="stylesheet">

18 <style type="text/css">

19 body {

20 padding -top: 20px;

21 padding -bottom: 60px;

22 }

23

24 /* Custom container */

25 .container {

26 margin: 0 auto;

27 max -width: 1000px;

28 }

29 .container > hr {

30 margin: 60px 0;

31 }

32

33 /* Main marketing message and sign up button */

34 .jumbotron {

35 margin: 80px 0;

36 text -align: center;

37 }

38 .jumbotron h1 {

39 font -size: 100px;

40 line -height: 1;

41 }

42 .jumbotron .lead {

43 font -size: 24px;

44 line -height: 1.25;

45 }

46 .jumbotron .btn {

47 font -size: 21px;

48 padding: 14px 24px;

49 }

50

51 /* Supporting marketing content */

52 .marketing {

53 margin: 60px 0;
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54 }

55 .marketing p + h4 {

56 margin -top: 28px;

57 }

58

59

60 /* Customize the navbar links to be fill the entire space of the .navbar */

61 .navbar .navbar -inner {

62 padding: 0;

63 }

64 .navbar .nav {

65 margin: 0;

66 display: table;

67 width: 100%;

68 }

69 .navbar .nav li {

70 display: table -cell;

71 width: 1%;

72 float: none;

73 }

74 .navbar .nav li a {

75 font -weight: bold;

76 text -align: center;

77 border -left: 1px solid rgba (255 ,255 ,255 ,.75);

78 border -right: 1px solid rgba (0,0,0,.1);

79 }

80 .navbar .nav li:first -child a {

81 border -left: 0;

82 border -radius: 3px 0 0 3px;

83 }

84 .navbar .nav li:last -child a {

85 border -right: 0;

86 border -radius: 0 3px 3px 0;

87 }

88 </style >

89 <link href="../ docs/assets/css/bootstrap -responsive.css" rel="stylesheet">

90

91 <!-- HTML5 shim , for IE6 -8 support of HTML5 elements -->

92 <!--[if lt IE 9]>

93 <script src="../ docs/assets/js/html5shiv.js"></script >

94 <![endif]-->

95

96 <!-- Fav and touch icons -->

97 <link rel="apple -touch -icon -precomposed" sizes="144 x144" href="../ docs/assets

/ico/apple -touch -icon -144- precomposed.png">

98 <link rel="apple -touch -icon -precomposed" sizes="114 x114" href="../ docs/assets

/ico/apple -touch -icon -114- precomposed.png">

99 <link rel="apple -touch -icon -precomposed" sizes="72x72" href="../ docs/assets

/ico/apple -touch -icon -72- precomposed.png">

100 <link rel="apple -touch -icon -precomposed" href="../ docs/assets

/ico/apple -touch -icon -57- precomposed.png">

101 <link rel="shortcut icon" href="../ docs/assets

/ico/favicon.png">

102 </head >

103
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104 <body >

105

106 <div class="container">

107

108 <div class="masthead">

109 <h3 class="muted"><img src="../img/logo101.gif" width="50" height="50">

Operator Intervening System </h3>

110 <p class="text -right"><span class="badge"><i class="icon -user"></i> Login

Operator <strong ><?php echo $user; ?></strong ></span ></p>

111 <div class="navbar">

112 <div class="navbar -inner">

113 <div class="container">

114 <ul class="nav">

115 <li class="active"><a href="./main.php"><i class="icon -cog"></i>

Home </a></li>

116 <li><a href="./ accesslog.php"><i class="icon -eye -open"></i>

Access Log </a></li>

117 <li><a href="./ putlog.php"><i class="icon -file"></i> EPICS Put

Log </a></li >

118 <li><a href="./ gwreport.php"><i class="icon -list -alt"></i>

Gateway Report </a></li>

119 <li><a href="./asg.php"><i class="icon -warning -sign"></i> Access Security </a

></li>

120 <li><a href="./ logout.php">Logout </a></li>

121 </ul >

122 </div >

123 </div >

124 </div ><!-- /. navbar -->

125 </div >

126 <!-- Example row of columns -->

127 <div class="row -fluid">

128 <div class="span6">

129 <h2>REQUEST PVs </h2 >

130 <div id="request"></div >

131 <p><a class="btn btn -primary" onClick="On_all_check ()">ALL &raquo;</a>&

nbsp;

132 <a class="btn" onClick="open_box(’<?php echo $user; ?>’)">NEXT </a>&

nbsp;

133 <a class="btn" onClick="close_box ()">CANCEL </a>

134

135 <div id="reserved1"></div ></p>

136 </div >

137

138 <div class="span6">

139 <h2>IN -OPERATION </h2 >

140 <div id="operation"></div >

141 <p></p>

142 </div >

143 </div >

144 <br>

145 <div class="row -fluid">

146 <div class="span10">

147 <h2>DONE PVs </h2>

148 <div id="done"></div >

149 <p></p>
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150 </div >

151 </div >

152

153 <hr>

154

155 <!-- Modal -->

156 <div aria -hidden="true" aria -labelledby="myModalLabel" class="modal hide fade" id

="myModal" role="dialog" tabindex="-1">

157 <div id="modal"></div >

158 </div >

159

160 <div class="footer">

161 <p>&copy; RIKEN Nishina Center Beam Dynamics & Diagnostics Team. and KEK

</p>

162 </div >

163

164 </div > <!-- /container -->

165

166 <!-- Le javascript

167 ================================================== -->

168 <!-- Placed at the end of the document so the pages load faster -->

169 <script src="../ docs/assets/js/jquery.js"></script >

170 <script src="../ docs/assets/js/bootstrap -transition.js"></script >

171 <script src="../ docs/assets/js/bootstrap -alert.js"></script >

172 <script src="../ docs/assets/js/bootstrap -modal.js"></script >

173 <script src="../ docs/assets/js/bootstrap -dropdown.js"></script >

174 <script src="../ docs/assets/js/bootstrap -scrollspy.js"></script >

175 <script src="../ docs/assets/js/bootstrap -tab.js"></script >

176 <script src="../ docs/assets/js/bootstrap -tooltip.js"></script >

177 <script src="../ docs/assets/js/bootstrap -popover.js"></script >

178 <script src="../ docs/assets/js/bootstrap -button.js"></script >

179 <script src="../ docs/assets/js/bootstrap -collapse.js"></script >

180 <script src="../ docs/assets/js/bootstrap -carousel.js"></script >

181 <script src="../ docs/assets/js/bootstrap -typeahead.js"></script >

182 <script src="../js/main.js"></script >

183 </body >

184 </html >

Listing B.11: Web interface for operator intervention system.
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