
Device/driver Support of
F3RP61

J. Odagiri

Contents

! What device/driver support does
! Implementation of device/driver support
! Accessing I/O modules
! Accessing sequence CPU devices
! Accessing shared memory
! Processing records by I/O interrupt
! Summary

What devSup/drvSup does (1/2)

! FAQ
! Which I/O modules does your device/driver

support cover?

! The answer is "All", but…
! The device/driver support modules support

only basic access to the registers of I/O
modules

! That’s all if the I/O module is a simple one,
such as DI, DO, A/D, D/A

What devSup/drvSup does (2/2)

! What if the I/O module is more complicated
one, such as stepping motor controller?

! Use EPICS sequencer (SNL) to implement control
sequence

! Wait for a directive to come in from OPI

! Write a command code into a register

! Set a command execution flag (Y-relay)

! Wait for instantaneous ACK (X-relay)

! Wait for FIN upon completion (X-relay)

! Go back to the top

Implementation of devSup/drvSup

! Nothing special

! Just wrap the kernel-level driver

! Everybody's doin' a brand new control now

! Come on baby, do the F3RP61

! I know you'll get to like it if you give it a chance now

! My little baby sister can do it with ease

! It's easier than learnin' your ABCs

! So, come on, come on, and do The F3RP61 with me!

! Ask a question about the origin of the above six lines to elderly
people (such as Furukawa-san) if you are young enough not to
know it

Accessing I/O modules (1/3)

! Digital I/O modules
! Bit read/write

! bi to read X and Y (relay status)

! bo to write Y (relay status, X is not write-able)

! Word read/write (16 bits)
! mbbiDirect to read Xs and Ys (status bits)

! mbboDirect to write Ys (operation mode etc.)

! longin to read Xs and Ys (binary value)

! longout to write Ys (binary value)

! ai to read Xs and Ys (binary value)

! ao to write Ys (binary value)

Accessing I/O modules (2/3)

! Analog I/O modules
! longin, mbbiDirect

! to read back parameter registers

! longout, mbboDirect
! to write parameter registers

! ai
! to read input/output data registers

! ao
! to write output data registers

Accessing I/O modules (3/3)

! An example
! Read X2 of DI in slot 3

! All modules are on unit 0

record (bi, "test:slot3:ch2")

{

 field (SCAN, "1 second")

 field (DTYP, "F3RP61")

 field (INP, "@U0,S3,X2")

}

Accessing sequence CPU

! Data register (D), Internal relay (I), etc.

! Needs message passing to access those
devices
! Send a command message and wait for the

response message to come in

! Must implement asynchronous I/O device
support

! Under construction (not yet finished)

! More efficient inter-CPU communication has
been supported based on shared memory

 Accessing shared memory (1/3)

! One unit of FA-M3 can have up to 4 CPUs
(sequence CPUs and F3RP61s)

! They can communicate each other over the
shared memory

! Typical application that requires shared-
memory-based communication is monitor of
interlock system
! Sequence CPUs handle interlock logic and copy

the I/O-relay status into shared memory
! F3RP61 reads the status from the shared memory

and report to the CA-clients

Accessing shared memory (2/3)

! An important caution (from our
experience)
! Never read I/O-relays by using F3RP61

directly
! Otherwise, rebooting Linux on F3RP61 can

make the ladder programs stop by I/O-
Error

! Use shared memory to transfer the I/O
status read by the sequence CPUs to
F3RP61

Accessing shared memory (3/3)

! An example
! Read one word of data from address 0 in a shared

memory area owned by a sequence CPU in slot 1
! All modules are on unit 0

record (mbbiDirect, "test:cpu1:addr0")
{
 field (SCAN, "1 second")
 field (DTYP, "F3RP61")
 field (INP, "@CPU1,R0")
}

Processing by I/O-interrupt (1/2)

! Digital input module can cause I/O-interrupt

! Kernel-level driver of F3RP61 transforms the
interrupt into a message and delivers it to a
user process

! Device/driver support supports the scan value
of "I/O Intr" based on the kernel-level driver

! Most of input-type records can use "I/O Intr"

! Under construction (Not yet finished)

Processing by I/O-interrupt (2/2)

! An example
! Read CH2 of A/D module in slot 5 upon an interrupt on

X1 of DI in slot 2
! All modules are on unit 0

record (ai, "test:read_adc:upon_intr")
{
 field (SCAN, "I/O Intr")
 field (DTYP, "F3RP61")
 field (INP, "@U0,S5,A2:U0,S2,X1")
}

Summary

! You can access all types of the I/O modules

! Use EPICS sequencer (SNL program) to
implement control sequence if necessary

! Use shared memory in order to communicate
with sequence CPUs

! Message-based access to CPU devices (D, I,
etc.) will be supported sometime in the future

! I/O-Interrupt will be supported (very) soon

