
1Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Introduction to

Channel Access Client Library

Kazuro Furukawa
<kazuro.furukawa@kek.jp>

for EPICS2009 at RRCAT

January 29, 2009

Based on presentations by

Kenneth Evans, Jr., 2004

Kazuro Furukawa, 2006

Kay Kasemir, 2007

< kazuro.furukawa @ kek.jp >

2Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Outline

!Channel Access Concepts

!Channel Access API

!Simple CA Client

!Simple CA Client with Callbacks

!(EPICS Build System)

3Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Channel Access Reference Manual

!The place to go for more information

!Found in the EPICS web pages

"http://www.aps.anl.gov/epics/index.php

"Look under Documents

"Also under Base, then a specific version of Base

4Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

EPICS Overview

MEDM MEDM Client Client Client MEDM

Server IOC IOC

Meter Power Supply Camera

IOC

Channel Access

5Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Search and Connect Procedure

MEDM MEDM Client Client Client MEDM

Server IOC IOC

Meter Power Supply Camera

IOC

3. TCP Connection

Let’s talk !

1. UDP Broadcast Sequence

Who has it ?

Check Check CheckCheck

2. UDP Reply

I have it !

IOC

6Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Channel Access in One Slide

CA Server

CA Client

Process Variables:

Channel Access Server

S1A:H1:CurrentAO

S1:P1:x

S1:P1:y

S1:G1:vacuum

Channel Access Client

Who has a PV named “
S1A:H1:CurrentAO”?

I do.

What is its
value?

25.5
AMPS

Change its
value to 30.5

“connection request” or
“search request”

OK, it
is now

30.5

30.5 is too high.
It is now set to
the maximum
value of 27.5.

You are not
authorized to

change this value

Notify me
when the

value
changes

It is now
20.5 AMPS

It is now
10.5 AMPS

It is now
-0.0023 AMPS

“put” or

“caPut”

“get” or

“caGet”

“set a
monitor”

“post an event”

or

“post a monitor”

“put complete”

or

or

CA Server

CA Client

Process Variables:

Channel Access Server

S1A:H1:CurrentAO

S1:P1:x

S1:P1:y

S1:G1:vacuum

Channel Access Client

Who has a PV named “
S1A:H1:CurrentAO”?

I do.

What is its
value?

25.5
AMPS

Change its
value to 30.5

“connection request” or
“search request”

OK, it
is now

30.5

30.5 is too high.
It is now set to
the maximum
value of 27.5.

You are not
authorized to

change this value

Notify me
when the

value
changes

It is now
20.5 AMPS

It is now
10.5 AMPS

It is now
-0.0023 AMPS

“put” or

“caPut”

“get” or

“caGet”

“set a
monitor”

“post an event”

or

“post a monitor”

“put complete”

or

or

7Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Search Request

!A search request consists of a sequence of UDP packets
"Only goes to EPICS_CA_ADDR_LIST

"Starts with a small interval (30 ms), that doubles each time

"Until it gets larger than 5 s, then it stays at 5 s

"Stops after 100 packets or when it gets a response

"Never tries again until it sees a beacon anomaly or creates a new PV

"Total time is about 8 minutes to do all 100

!Servers have to do an Exist Test for each packet

!Usually connects on the first packet or the first few

!Non-existent PVs cause a lot of traffic
"Try to eliminate them

8Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

!A Beacon is a UDP broadcast packet sent by a Server

!When it is healthy, each Server broadcasts a UDP beacon at
regular intervals (like a heartbeat)
"EPICS_CA_BEACON_PERIOD, 15 s by default

!When it is coming up, each Server broadcasts a startup
sequence of UDP beacons
"Starts with a small interval (25 ms, 75 ms for VxWorks)

"Interval doubles each time

"Until it gets larger than 15 s, then it stays at 15 s

#Takes about 10 beacons and 40 s to get to steady state

!Clients monitor the beacons
"Determine connection status, whether to reissue searches

Beacons

9Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Virtual Circuit Disconnect

!3.13 and early 3.14

"Hang-up message or no response from server for 30 sec.

"If not a hang-up, then client sends “Are you there” query

"If no response for 5 sec, TCP connection is closed

"MEDM screens go white

"Clients reissue search requests

!3.14 5 and later

"Hang-up message from server

"TCP connection is closed

"MEDM screens go white

"Clients reissue search requests

10Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Virtual Circuit Unresponsive

!3.14.5 and later

"No response from server for 30 sec.

"Client then sends “Are you there” query

"If no response for 5 sec, TCP connection is not closed

#For several hours, at least

"MEDM screens go white

"Clients do not reissue search requests

#Helps with network storms

"Clients that do not call ca_poll frequently get a virtual circuit

disconnect even though the server may be OK

#Clients written for 3.13 but using 3.14 may have a problem

#May be changed in future versions

11Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Important Environment Variables

!EPICS_CA_ADDR_LIST

"Determines where to search

"Is a list (separated by spaces)

#“123.45.1.255 123.45.2.14 123.45.2.108”

"Default is broadcast addresses of all interfaces on the host

#Works when servers are on same subnet as Clients

"Broadcast address

#Goes to all servers on a subnet

#Example: 123.45.1.255

#Use ifconfig –a on UNIX to find it (or ask an administrator)

!EPICS_CA_AUTO_ADDR_LIST

"YES: Include default addresses above in searches

"NO: Do not search on default addresses

"If you set EPICS_CA_ADDR_LIST, usually set this to NO

12Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

EPICS_CA_ADDR_LIST

MEDM MEDM Client Client Client MEDM

Server IOC IOC

Meter Power Supply Camera

IOC

Subnet 2Subnet 1

Specific

123.45.2.108

Broadcast

123.45.1.255

Not Included

13Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Other Environment Variables

!CA Client
EPICS_CA_ADDR_LIST

EPICS_CA_AUTO_ADDR_LIST

EPICS_CA_CONN_TMO

EPICS_CA_BEACON_PERIOD

EPICS_CA_REPEATER_PORT

EPICS_CA_SERVER_PORT

EPICS_CA_MAX_ARRAY_BYTES

EPICS_TS_MIN_WEST

!See the Channel Access Reference Manual
for more information

!CA Server
EPICS_CAS_SERVER_PORT

EPICS_CAS_AUTO_BEACON_ADDR_LIST

EPICS_CAS_BEACON_ADDR_LIST

EPICS_CAS_BEACON_PERIOD

EPICS_CAS_BEACON_PORT

EPICS_CAS_INTF_ADDR_LIST

EPICS_CAS_IGNORE_ADDR_LIST

14Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

3.13 and 3.14 Similarities
!Much effort has done into making clients written

for 3.13 work with 3.14 with no changes to the

coding

!Even large programs like MEDM have had to make

only a few minor changes

!This means existing programs typically do not

need to be rewritten

"This is good!

!In contrast, Channel Access Servers require many

changes in converting to 3.14

15Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

3.13 and 3.14 Differences
!3.14 is threaded
"Your program does not have to be threaded

!3.14 has different names for some functions
"ca_context_create for ca_task_initialize

"ca_context_destroy for ca_task_exit

"ca_create_channel for ca_search_and_connect

"ca_create_subscription for ca_add_event

"ca_clear_subscription for ca_clear_event

"The new functions may have more capabilities, usually related to
threading

"We will use the new names

!3.14 has a different mechanism for lost connections
"Virtual circuit unresponsive (Not available in 3.13)

"Virtual circuit disconnected

16Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Channel Access
!The main CA client interface is the "C" library that
comes with EPICS base
"Internally uses C++, but API is pure C.

!Almost all other CA client interfaces use that C
library
"Exception: New pure Java JAC

17Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Basic Procedure for a Channel Access Client

!Initialize Channel Access
"ca_task_initialize or ca_context_create

!Search
"ca_search_and_connect or ca_create_channel

!Do get or put
"ca_get or ca_put

!Monitor
"ca_add_event or ca_create_subscription

!Give Channel Access a chance to work
"ca_poll, ca_pend_io, ca_pend_event

!Clear a channel
"ca_clear_channel

!Close Channel Access
"ca_task_exit or ca_context_destroy

18Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

cadef.h

!All C or C++ programs must include cadef.h
"#include <cadef.h>

!You can look at this file to get more insight into
Channel Access

!This presentation will use C examples
"We will try to emphasize concepts, not the language

"Even if you do not use C, it is important to understand
what is going on behind what you do use

19Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

ca_context_create
enum ca_preemptive_callback_select {
 ca_disable_preemptive_callback,
 ca_enable_preemptive_callback };

int ca_context_create (

enum ca_preemptive_callback_select SELECT);

!Should be called once prior to any other calls

!Sets up Channel Access

!Use SELECT=ca_disable_preemptive_callback
"Unless you intend to do threads

!Can also use ca_task_initialize() for 3.13 compatibility

20Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

ca_context_destroy
void ca_context_destroy ();

!Should be called before exiting your program

!Shuts down Channel Access

!Can also use ca_task_exit() for 3.13
compatibility

21Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

ca_create_channel
typedef void caCh (struct connection_handler_args ARGS);

int ca_create_channel (

const char *PVNAME,

caCh *CALLBACK,

void *PUSER,

capri PRIORITY,

chid *PCHID);

!Sets up a channel and starts the search process

!PVNAME is the name of the process variable

!CALLBACK is the name of your connection callback (or NULL)
"The callback will be called whenever the connection state changes,
including when first connected

"Information about the channel is contained in ARGS

"Use NULL if you don’t need a callback

22Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

ca_create_channel, cont’d
typedef void caCh (struct connection_handler_args ARGS);

int ca_create_channel (

const char *PVNAME,

caCh *CALLBACK,

void *PUSER,

capri PRIORITY,

chid *PCHID);

!PUSER is a way to pass additional information
"Whatever you have stored at this address

"It is stored in the chid

"In C++ it is often the this pointer for a class

"Use NULL if you don’t need it

!Use PRIORITY=CA_PRIORITY_DEFAULT

23Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

ca_create_channel, cont’d
typedef void caCh (struct connection_handler_args ARGS);

int ca_create_channel (

const char *PVNAME,

caCh *CALLBACK,

void *PUSER,

capri PRIORITY,

chid *PCHID);

!A chid is a pointer to (address of) an opaque struct used by Channel

Access to store much of the channel information

"chanId is the same as chid (typedef chid chanId;)

!PCHID is the address of the chid pointer (Use &CHID)

"You need to allocate space for the chid before making the call

"Channel Access will allocate space for the struct and return the address

24Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

ca_create_channel, cont’d
typedef void caCh (struct connection_handler_args ARGS);

int ca_create_channel (

const char *PVNAME,

caCh *CALLBACK,

void *PUSER,

capri PRIORITY,

chid *PCHID);

!Use macros to access the information in the chid

"ca_name(CHID) gives the process variable name

"ca_state(CHID) gives the connection state

"ca_puser(CHID) gives the PUSER you specified

"Etc.

!The ARGS struct in the connection callback includes the chid

!Can also use ca_search_and connect() for 3.13 compatibility

25Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

ca_clear_channel
int ca_clear_channel (chid CHID);

!Shuts down a channel and reclaims

resources

!Should be called before exiting the program

!CHID is the same chid used in

ca_create_channel

26Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

ca_array_get
int ca_array_get (

chtype TYPE,

unsigned long COUNT,

chid CHID,

void *PVALUE);

!Requests a scalar or array value from a process variable

!Typically followed by ca_pend_io

!TYPE is the external type of your variable

"Use one of the DBR_xxx types in db_access.h

"E.g. DBR_DOUBLE or DBR_STRING

!COUNT is the number of array elements to read

!CHID is the channel identifier from ca_create_channel

!PVALUE is where you want the value(s) to go

"There must be enough space to hold the values

27Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

ca_array_get_callback
typedef void (*pCallBack) (struct event_handler_args ARGS);

int ca_array_get_callback (

chtype TYPE,

unsigned long COUNT,

chid CHID,

pCallBack USERFUNC,

void *USERARG);

!Requests a scalar or array value from a process variable,
using a callback

!TYPE is the external type of your variable
"Use one of the DBR_xxx types in db_access.h

"E.g. DBR_DOUBLE or DBR_STRING

!COUNT is the number of array elements to read

28Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

ca_array_get_callback, cont’d
typedef void (*pCallBack) (struct event_handler_args ARGS);

int ca_array_get_callback (

chtype TYPE,

unsigned long COUNT,

chid CHID,

pCallBack USERFUNC,

void *USERARG);

!CHID is the channel identifier from ca_create_channel

!USERFUNC is the name of your callback to be run when the
operation completes

!USERARG is a way to pass additional information to the callback
"struct event_handler_args has a void *usr member

29Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

ca_array_put
int ca_array_put (

chtype TYPE,

unsigned long COUNT,

chid CHID,

const void *PVALUE);

!Requests writing a scalar or array value to a process variable

!Typically followed by ca_pend_io

!TYPE is the external type of your supplied variable

"Use one of the DBR_xxx types in db_access.h

"E.g. DBR_DOUBLE or DBR_STRING

!COUNT is the number of array elements to write

!CHID is the channel identifier from ca_create_channel

!PVALUE is where the value(s) to be written are found

30Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

ca_array_put_callback
typedef void (*pCallBack) (struct event_handler_args ARGS);

int ca_array_put_callback (

chtype TYPE,

unsigned long COUNT,

chid CHID,

const void *PVALUE,

pCallBack USERFUNC,

void *USERARG);

!Requests writing a scalar or array value to a process
variable, using a callback

!TYPE is the external type of your variable
"Use one of the DBR_xxx types in db_access.h

"E.g. DBR_DOUBLE or DBR_STRING

31Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

ca_array_put_callback, cont’d
typedef void (*pCallBack) (struct event_handler_args ARGS);

int ca_array_put_callback (

chtype TYPE,

unsigned long COUNT,

chid CHID,

const void *PVALUE,

pCallBack USERFUNC,

void *USERARG);

!COUNT is the number of array elements to write

!CHID is the channel identifier from ca_create_channel

!PVALUE is where the value(s) to be written are found

32Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

ca_array_put_callback, cont’d
typedef void (*pCallBack) (struct event_handler_args ARGS);

int ca_array_put_callback (

chtype TYPE,

unsigned long COUNT,

chid CHID,

const void *PVALUE,

pCallBack USERFUNC,

void *USERARG);

!USERFUNC is the name of your callback to be run when the
operation completes

!USERARG is a way to pass additional information to the callback
"struct event_handler_args has a void *usr member

33Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

ca_create_subscription
typedef void (*pCallBack) (struct event_handler_args ARGS);

int ca_create_subscription (

chtype TYPE,

unsigned long COUNT,

chid CHID,

unsigned long MASK,

pCallBack USERFUNC,

void *USERARG,

evid *PEVID);

!Specify a callback function to be invoked whenever!the
process variable undergoes!significant state changes
"Value, Alarm status, Alarm severity

"This is the way to monitor a process variable

34Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

ca_create_subscription, cont’d
typedef void (*pCallBack) (struct event_handler_args ARGS);

int ca_create_subscription (

chtype TYPE,

unsigned long COUNT,

chid CHID,

unsigned long MASK,

pCallBack USERFUNC,

void *USERARG,

evid *PEVID);

!TYPE is the external type you want returned
"Use one of the DBR_xxx types in db_access.h

"E.g. DBR_DOUBLE or DBR_STRING

!COUNT is the number of array elements to monitor

35Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

ca_create_subscription, cont’d
typedef void (*pCallBack) (struct event_handler_args ARGS);

int ca_create_subscription (

chtype TYPE,

unsigned long COUNT,

chid CHID,

unsigned long MASK,

pCallBack USERFUNC,

void *USERARG,

evid *PEVID);

!CHID is the channel identifier from ca_create_channel

!MASK has bits set for each of the event trigger types requested
"DBE_VALUE Value changes

"DBE_LOG Exceeds archival deadband

"DBE_ALARM Alarm state changes

36Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

ca_create_subscription, cont’d
typedef void (*pCallBack) (struct event_handler_args ARGS);

int ca_create_subscription (

chtype TYPE,

unsigned long COUNT,

chid CHID,

unsigned long MASK,

pCallBack USERFUNC,

void *USERARG,

evid *PEVID);

!USERFUNC is the name of your callback to be run when the state
change occurs

!USERARG is a way to pass additional information to the callback
"struct event_handler_args has a void *usr member

37Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

ca_create_subscription, cont’d
typedef void (*pCallBack) (struct event_handler_args ARGS);

int ca_create_subscription (

chtype TYPE,

unsigned long COUNT,

chid CHID,

unsigned long MASK,

pCallBack USERFUNC,

void *USERARG,

evid *PEVID);

!PEVID is the address of an evid (event id)
"You need to allocate space for the evid before making the call

"Similar to a chid

"Only used to clear the subscription (Can be NULL if not needed)

38Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

ca_clear_subscription
int ca_clear_subscription (evid EVID);

!Used to remove a monitor callback

!EVID is the evid from ca_create_subscription

39Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

ca_add_exception_event
typedef void (*pCallback) (struct exception_handler_args ARGS);

int ca_add_exception_event (

pCallback USERFUNC,

void *USERARG);

!Used to replace the default exception handler

!USERFUNC is the name of your callback to be run when

an exception occurs

"Use NULL to remove the callback

!USERARG is a way to pass additional information to the

callback

"struct exception_handler_args has a void *usr member

40Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Request Handling
!The preceding routines are requests
"They only queue the operation

"They hardly ever fail

#The return values are almost always ECA_NORMAL

#(But they should be checked)

!These requests are only processed when one of the
following is called
"ca_pend_io Blocks until requests are processed

"ca_pend_event Blocks a specified time

"ca_poll Processes current work only

!If these routines are not called, the requests are not
processed and background tasks are also not processed

!The rule is that one of these should be called every 100 ms
"To allow processing of background tasks (beacons, etc.)

41Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

ca_pend_io
int ca_pend_io (double TIMEOUT);

!Flushes the send buffer

!Blocks for up to TIMEOUT seconds until

"Outstanding gets complete

"Searches with no callback have connected

!Returns ECA_NORMAL when gets and searches are complete

!Returns ECA_TIMEOUT otherwise

"Means something went wrong

"Get requests can be reissued

"Search requests can be reissued after ca_clear_channel

!Channel Access background tasks are performed

"Unless there were no outstanding I/O requests

!Use with searches, gets, and puts that don’t use callbacks

42Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

ca_pend_event
int ca_pend_event (double TIMEOUT);

!Flushes the send buffer

!Process background tasks for TIMEOUT seconds
"Does not return until TIMEOUT seconds have elapsed

!Use this when your application doesn’t have to
do anything else

!Use ca_pend_event instead of sleep

43Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

ca_poll
int ca_poll ();

!Flushes the send buffer

!Process outstanding tasks only
"Exits when there are no more outstanding tasks
#Otherwise similar to ca_pend_event

!Use this when your application has other things
to do
"E.g. most GUI programs

!Be sure it is called at least every 100 ms

44Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

CHID Macros
chtype ca_field_type (CHID);

unsigned ca_element_count (CHID);

char *ca_name (CHID);

void *ca_puser (CHID);

void ca_set_puser (chid CHID, void *PUSER);

enum channel_state ca_state (CHID);

 enum channel_state {

 cs_never_conn, Valid chid, server not found or unavailable

 cs_prev_conn, Valid chid, previously connected to server

 cs_conn, Valid chid, connected to server

 cs_closed }; Channel deleted by user

char *ca_host_name (CHID);

int ca_read_access (CHID);

int ca_write_access (CHID);

45Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

ca_connection_handler_args
struct ca_connection_handler_args {

chanId chid; Channel id

long op; CA_OP_CONN_UP or

CA_OP_CONN_DOWN

};

!Used in connection callback

!Note chanId is used rather than chid
"Some compilers don’t like chid chid;

46Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

event_handler_args
typedef struct event_handler_args {

void *usr; User argument supplied with request

chanId chid; Channel ID

long type; The type of the item returned

long count; The element count of the item returned

const void *dbr; A pointer to the item returned

int status; ECA_xxx status of the requested op

} evargs;

!Used in get, put, and monitor callbacks

!Do not use the value in dbr if status is not ECA_NORMAL

47Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Channel Access API Functions

ca_add_exception_event

ca_attach_context

ca_clear_channel

ca_clear_subscription

ca_client_status

ca_context_create

ca_context_destroy

ca_context_status

ca_create_channel

ca_create_subscription

ca_current_context

ca_dump_dbr()

ca_element_count

ca_field_type

ca_flush_io

ca_get

ca_host_name

ca_message

ca_name

ca_read_access

ca_replace_access_rights_event

ca_replace_printf_handler

ca_pend_event

ca_pend_io

ca_poll

ca_puser

ca_put

ca_set_puser

ca_signal

ca_sg_block

ca_sg_create

ca_sg_delete
ca_sg_get
ca_sg_put
ca_sg_reset
ca_sg_test
ca_state
ca_test_event
ca_test_io
ca_write_access
channel_state
dbr_size[]
dbr_size_n
dbr_value_size[]
dbr_type_to_text
SEVCHK

ca_add_event

ca_clear_event

ca_search

ca_search_and_connect

ca_task_exit

ca_task_initialize

Deprecated

48Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

makeBaseApp.pl
!Includes a template for basic CA client in C:

"Start with this:

mkdir cac ; cd cac

makeBaseApp.pl -t caClient cacApp
make

"Result:

bin/linux-x86/caExample <some PV>
bin/linux-x86/caMonitor <file with PV list>

"Then read the sources, compare with the reference
manual, and edit/extend to suit your needs.

49Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

makeBaseApp's caExample.c

!Minimal CA client program.

"Fixed timeout, waits until data arrives.

"Requests everything as 'DBR_DOUBLE'.

#… which results in values of C-type 'double'.

#See db_access.h header file for all the DBR_… constants

and the resulting C types or structures.

#In addition to the basic DBR_<type> requests, it is

possible to request packaged attributes like

DBR_CTRL_<type> to get { value, units, limits, …} in one

request.

50Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

makeBaseApp's caMonitor.c

!Better CA client program.
"Registers callbacks to get notified when connected
ot disconnected

"Subscribes to value updates instead of waiting.

"… but still uses the same data type (DBR_STRING)
for everything.

51Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Ideal CA client?
!Use callbacks for everything

"no idle 'wait', no fixed time outs.

!Upon connection, check the channel's native type (int,
double, string, …)
"to limit the type conversion burden on the IOC.

!… request the matching DBR_CTRL_<type> once
"to get the full channel detail (units, limits, …).

!… and then subscribe to DBR_TIME_<type> to get updates of
only time/status/value
"so now we always stay informed, yet limit the network traffic.

"Only subscribe once, not with each connection, because CA client
library will automatically re-activate subscriptions!

!This is what EDM, archiver, … do.
"Quirk: They don't learn about online changes of channel limits, units,

….
Doing that via a subscription means more network traffic, and CA
doesn't send designated events for 'meta information changed'.

52Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Simple CA Client
!Defines and includes

/* Simple CA client */

#define TIMEOUT 1.0

#define SCA_OK 1

#define SCA_ERR 0

#define MAX_STRING 40

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <cadef.h>

53Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Simple CA Client
!Function prototypes and global variables

/* Function prototypes */

int main(int argc, char **argv);

static int parseCommand(int argc, char **argv);

static void usage(void);

/* Global variables */

int pvSpecified=0;

char name[MAX_STRING];

char value[MAX_STRING];

double timeout=TIMEOUT;

54Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Simple CA Client
!Parse the command line

int main(int argc, char **argv)

{

 int stat;

 chid pCh;

 /* Parse the command line */

 if(parseCommand(argc,argv) != SCA_OK)
exit(1);

 if(!pvSpecified) {

 printf("No PV specified\n");

 exit(1);

 }

55Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Simple CA Client
!Initialize Channel Access

 /* Initialize */

 stat=ca_context_create(ca_disable_preemptive_callback);

 if(stat != ECA_NORMAL) {
 printf("ca_context_createfailed:\n%s\n",

 ca_message(stat));

exit(1);

 }

56Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Simple CA Client
!Request the search

 /* Search */

 stat=ca_create_channel(name,NULL,NULL,

 CA_PRIORITY_DEFAULT,&pCh);

 if(stat != ECA_NORMAL) {

 printf("ca_create_channel failed:\n%s\n",

 ca_message(stat));

 exit(1);

 }

57Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Simple CA Client
!Call ca-pend_io to process the search

 /* Process search */

 stat=ca_pend_io(timeout);

 if(stat != ECA_NORMAL) {

 printf(“search timed out after %g sec\n",

 timeout);

 exit(1);

 }

58Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Simple CA Client
!Request the get

 /* Get the value */

 stat=ca_array_get(DBR_STRING,1,pCh,&value);

 if(stat != ECA_NORMAL) {

 printf("ca_array_get:\n%s\n",

 ca_message(stat));

 exit(1);

 }

59Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Simple CA Client
!Call ca_pend_io to process the get

 /* Process get */

 stat=ca_pend_io(timeout);

 if(stat != ECA_NORMAL) {

 printf(“get timed out after %g sec\n",

 timeout);

 exit(1);

 }

 printf("The value of %s is %s\n",name,value)

60Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Simple CA Client
!Clean up

 /* Clear the channel */

 stat=ca_clear_channel(pCh);

 if(stat != ECA_NORMAL) {

printf("ca_clear_channel failed:\n%s\n",

 ca_message(stat));

 }

 /* Exit */

 ca_context_destroy();

 return(0);

}

61Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

SEVCHK

!For simple error handling in test programs

"SEVCHK (<function call>, “message”)

#Macro that checks return codes

#If error, displays message and aborts

#Used in example programs

#DON’T use for robust clients

62Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Simple CA Client
!Output

simplecaget evans:calc

The value of evans:calc is 6

63Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Simple CA Client with Callbacks
!Defines and includes

/* Simple CA client with Callbacks */

#define TIMEOUT 1.0

#define SCA_OK 1

#define SCA_ERR 0

#define MAX_STRING 40

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <string.h>

#include <cadef.h>

64Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Simple CA Client with Callbacks
!Function prototypes

/* Function prototypes */

int main(int argc, char **argv);

static void connectionChangedCB(struct connection_handler_args args);

static void valueChangedCB(struct event_handler_args args);

static char *timeStamp(void);

static int parseCommand(int argc, char **argv);

static void usage(void);

65Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Simple CA Client with Callbacks
!Global variables

/* Global variables */

int pvSpecified=0;

char name[MAX_STRING];

time_t curTime, startTime;

double timeout=TIMEOUT;

66Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Simple CA Client with Callbacks
!Parse the command line

int main(int argc, char **argv)

{

 int stat;

 chid pCh;

 /* Parse the command line */

 if(parseCommand(argc,argv) != SCA_OK) exit(1);

 if(!pvSpecified) {

 printf("No PV specified\n");

 exit(1);

 }

67Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Simple CA Client with Callbacks
!Initialize Channel Access

 /* Initialize */

 stat=ca_context_create(ca_disable_preemptive_callback);

 if(stat != ECA_NORMAL) {
 printf("ca_context_createfailed:\n%s\n",

 ca_message(stat));

exit(1);

 }

68Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Simple CA Client with Callbacks
!Search

 /* Search */

 stat=ca_create_channel(name,connectionChangedCB,NULL,

 CA_PRIORITY_DEFAULT,&pCh);

 if(stat != ECA_NORMAL) {

 printf("ca_create_channel failed:\n%s\n",

 ca_message(stat));

 exit(1);

 }

 printf("%s Search started for %s\n",timeStamp(),name);

69Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Simple CA Client with Callbacks
!Wait in ca_pend_event for the callbacks to occur

 /* Wait */

 startTime=curTime;

 ca_pend_event(timeout);

 printf("%s ca_pend_event timed out after %g sec\n",

 timeStamp(),timeout);

70Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Simple CA Client with Callbacks
!Clean up

 /* Clear the channel */

 stat=ca_clear_channel(pCh);

 if(stat != ECA_NORMAL) {

printf("ca_clear_channel failed:\n%s\n",

 ca_message(stat));

 }

 /* Exit */

 ca_context_destroy();

 return(0);

}

71Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Simple CA Client with Callbacks
!Connection callback implementation

static void connectionChangedCB(struct
connection_handler_args args)

{

 chid pCh=args.chid;

 int stat;

 /* Branch depending on the state */

 switch(ca_state(pCh)) {

72Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Simple CA Client with Callbacks
!Connection callback implementation

 case cs_conn:

 printf("%s Connection successful\n",timeStamp());

 stat=ca_array_get_callback(DBR_STRING,1,pCh,

 valueChangedCB,NULL);

 if(stat != ECA_NORMAL) {

 printf("ca_array_get_callback:\n%s\n",

 ca_message(stat));

 exit(1);

 }

 break;

73Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Simple CA Client with Callbacks
!Connection callback implementation

 case cs_never_conn:

 printf("%s Cannot connect\n",timeStamp());

 break;

 case cs_prev_conn:

 printf("%s Lost connection\n",timeStamp());

 break;

 case cs_closed:

 printf("%s Connection closed\n",timeStamp());

 break;

 }

}

74Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Simple CA Client with Callbacks
!Value changed callback implementation

static void valueChangedCB(struct
event_handler_args args)

{

 /* Print the value */

 if(args.status == ECA_NORMAL && args.dbr) {

 printf("%s Value is: %s\n",timeStamp(),

 (char *)args.dbr);

 printf("Elapsed time: %ld sec\n",

 curTime-startTime);

 }

}

75Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Simple CA Client with Callbacks
!Output

simplecagetcb evans:calc

Sep 14 18:31:55 Search started for evans:calc

Sep 14 18:31:55 Connection successful

Sep 14 18:31:55 Value is: 5

Elapsed time: 0 sec

Sep 14 18:31:56 ca_pend_event timed out after 1
sec

!Time for this operation is typically a few ms

76Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Source files for Simple Get Clients

!Some of the code that is not related to Channel
Access has not been shown

!All the files necessary to build a project as an
EPICS Extension should be available with the
presentation
"Makefile

"Makefile.Host

"simplecaget.c

"simplecagetcb.c

"LICENSE

!Stored as simpleCA.tar.gz

77Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

EPICS Build System

!Supports both native and GNU compilers

!Builds multiple types of components
"libraries, executables, headers, scripts, java classes, …

!Supports multiple host and target operating systems

!Builds for all hosts and targets in a single <top> tree
"epics/base

"epics/extensions

!Allows sharing of components across <top> trees

!Has different rules and syntax for 3.13 and 3.14

78Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

System Requirements

!Required software

"Perl version 5 or greater

"GNU make, version 3.78.1/3.81 or greater

"C++ compiler and linker (GNU or host vendor's

compiler)

!Optional software

"Tornado II and board support packages

"RTEMS development tools and libraries

"Motif, X11, JAVA, Tcl/Tk, Python…

79Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

User Requirements

!Set an environment variable to specify the
architecture
"EPICS_HOST_ARCH for 3.14
#solaris-sparc, linux-x86, win32-x86, darwin-ppc, etc.

"HOST_ARCH for 3.13
#solaris, Linux, WIN32, etc.

!Set the PATH so the required components can be
found
"Perl, GNU make, C and C++ compilers

"System commands (e.q. cp, rm, mkdir)

80Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Some Pointers to Documents

!Example files

"http://www.aps.anl.gov/epics/

"Documents - Training - Developing Client Tools

- Introduction to Chnnael Access Clients

- Example Files

!Build examples of EPICS-Base, etc

on several Platforms

"http://www-linac.kek.jp/jk/win32/

"http://www-linac.kek.jp/jk/linux/

"http://www-linac.kek.jp/jk/darwin/

81Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Some Examples of Channel-Access

!Of course, this Presentation

!makeBaseApp.pl -t caClient {app-name}

"caExample.c

"caMonitor.c

!makeBaseEx.pl -t example {ext-name}

!caExample.c

82Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Typical Extensions Build Tree
epics/base <top> for base

epics/extensions <top> for extensions

 config 3.13 configuration

 configure 3.14 configuration

 bin Binaries by architecture

 solaris

 solaris-sparc

 lib Libraries by architecture

 solaris

 solaris-sparc

 src Sources by application

 simpleCA Application source files

 O.solaris Binaries for this application

 O.solaris-sparc

83Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Getting Started with an Extension
!Make a directory structure for base

http://www.aps.anl.gov/epics/extensions/index.php

"E.g. epics/base

!Obtain base and build it

"Set COMPAT_TOOLS_313 first if necessary (see later)

!Make a directory structure for extensions

"E.g. epics/extensions

!Get extensions/config and configure from the EPICS pages

!Set EPICS_BASE to your desired version of base

"In extensions/config/RELEASE for 3.13

"In extensions/configure/RELEASE for 3.14

!Type gnumake (or make) in extensions

!Get an extension and put it under extensions/src

!Type gnumake (or make) in your application directory

84Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Using the 3.13 Build Rules for Extensions

!Most existing extensions are still set up for 3.13 builds
"There is a Makefile and a Makefile.Host

"Makefile.Host is most important and has 3.13 syntax

"Can still use a 3.14 base

!Set HOST_ARCH for your platform
"solaris, Linux, WIN32, etc.

!Set EPICS_HOST_ARCH for your platform
"solaris-sparc, linux-x86, win32-x86, darwin-ppc, etc.

!Configuration is in extensions/config
"RELEASE (Specifies what base to use, can be 3.14)

"CONFIG_SITE_xxx (Specifies local changes for xxx arch)

!Before building a 3.14 base
"Modify base/configure/CONFIG_SITE

#COMPAT_TOOLS_313 = YES

85Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Using the 3.14 Build Rules for Extensions

!Go to the the EPICS page for your version of base

"http://www.aps.anl.gov/epics/base/index.php

!Read the README

"It is very extensive

"Should tell you everything you need to know

!There is a only a Makefile and it uses 3.14 syntax

!Set EPICS_HOST_ARCH for your platform

"solaris-sparc, linux-x86, win32-x86, darwin-ppc, etc.

!Configuration is in extensions/configure

"RELEASE (Specifies what base)

"os/CONFIG_SITE_xxx (Specifies local changes for xxx arch)

86Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Makefile for Simple Get Clients
TOP = ../..

include $(TOP)/config/CONFIG_EXTENSIONS

include $(TOP)/config/RULES_ARCHS

87Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Makefile.Host for Simple Get Clients
TOP = ../../..

include $(TOP)/config/CONFIG_EXTENSIONS

HOST_OPT = NO

CMPLR = STRICT

PROD = simplecaget simplecagetcb

PROD_LIBS = ca Com

ca_DIR = $(EPICS_BASE_LIB)

Com_DIR = $(EPICS_BASE_LIB)

simplecaget_SRCS += simplecaget.c

simplecagetcb_SRCS += simplecagetcb.c

include $(TOP)/config/RULES.Host

88Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Acknowledgements

!Jeff Hill [LANL] is responsible for EPICS Channel

Access and has developed almost all of it himself

!Janet Anderson [ANL] is responsible for and has

developed most of the EPICS Build System

89Kazuro Furukawa, KEK, Jan.2009.

Channel Access Clients

EPICS Workshop 2009, RRCAT, India

Thank You

