SSRF CONTROL SYSTEM

Shen Liren SSRF Control group

shen@sinap.ac.cn

2010-3-2

phase 1 Beamlines

SSRF is a 3rd generation synchrotron radiation light source and aimed mainly at following research fields (at present) :

- Biological Sciences
- Physical and Materials Sciences
- Earth and Environmental Sciences
- BioMedical, Chemical and Industrial applications

BL08U1	Soft X-ray scanning spectroscopy		
BL13W1	X-Ray Imaging		
BL14B1	X-Ray diffraction		
BL14W1	XAFS		
BL15U1	Microfocusing		
BL16B1	Small angle X-Ray Scattering		
BL17U1	Protein crystallography		

SSRF User proposals for 2009 (up to 2009-3-31)

Beamline	Proposals	Beamtime request (shift/8hr)	
BL08U1(SXSM)	30	~ 246	
BL13W1(X-Ray Imaging)	40	~ 297	
BL14B1(XRD)	40	~ 245	
BL14W1(XAFS)	65	~ 545	
BL15U1(Microfocusing)	43	~ 352	
BL16B1 (SAXS)	32	~ 265	
BL17U1(MX)	51	~ 906	
Total	301	2868 (~23000hr)	

SSRF Control System

- SSRF control system is large scale real time control system running with high reliability and stability over 2 years in success.
- The SSRF control system adopted various advanced digital processing system
- Integrated with new computer technique and many hardware and software on the market

Overview

EPICS based control system

- Connected by 2G Backbone Ethernet with backbone redundancy for the whole system
- Using Ethernet as fieldbus
 - Ethernet based PLC
 - Serial 2 Ethernet translate for serial device
 - ➢ Soft IOC
- Centralized application server at server room

Environment of Control system

- Set up the environment of control system, used during phase of construct & in runtime.
- Composed with the control system network system, server system and OPI system.
- Uniform running and development software environment.
- Developer and operator can login in on any terminal and share resource of entire environment with one account system(NIS/AD).

Centralize EPICS Develpoment platform

Software

> OS

• Linux FC7/Kernel 2.6x/GCC 4.xx

EPICS base

• 3.13.9/**3.14.8.2**/3.14.7/3.14.6/3.14.5

Extensions

Edm/medm/SDDS/Archiver/Sequencer/etc.

Cross-compiler environment

• Gcc 2.8x/gcc 2.96/gcc 2.96 patch

Target

Motorola VME 5500/GE VME 7050/ Motorola VME2302

Server System

Two kinds of server:

- Linux & Windows Server
 - Integrated with Windows UNIX service 3.5
- > The operation system
 - Fedora core 7
 - Windows 2003 R2 64bit & 32bit
- Different application on different type of server
 - NIS, YUM, PXE, NFS, NTP, Windows AD, Epics Boot, Soft IOC, Archive, Alarm, Database, Web Service, WEB, e-Log etc.

User's home on one NFS Server

Virtual Machine

Soft IOC

- Multi-IOC running configure system
- Through a configure file, IOC can be stop, start, restart and set to be auto start state.
- The IOC management system will check the state of each IOC running state, if IOC crashed, it will be restarted.
- Inform with email or SMS

IOC Manager

Hardware system

- Uniform hardware design, as typical implementation of SSRF control system have:
 - Ethernet everywhere
 - > VME 64x System : GE VMIVME-7050 and Motorola MV5500.
 - > PLC system: Yokogawa FM3, SIEMENS S300.
 - > Serial port server MOXA NPort-5610.
 - > The embedded controller: Digital power supply controller
 - > VME board:
 - Timing system: VME-EVG-230, VME-EVR-230, EVR-TTB-200, EVR-OTB-200
 - PS control system: VIPC 664
 - Linux PC server (Soft IOC)

MOXA NPort

5610-16

Serial 2 Ethernet translate

MOXA UC Embedded Linux DI/DO

Control Group

SSRF CN, Shanghai, 2008

Software System

The SSRF control system running on EPICS base v3.14.8.2

OPI

EDM and some Python script

High level physics application

Matlab 2007a

MCA/LabCA

> Accelerator Toolbox (AT) & middle layer was adopted.

Perl/Python, Qt3

CodeGear RAD Studio 2007(Borland C++/Delphi)

For Windows client

Centre Database System

- Store the machine parameters and reference information for all stage of machine simulation and running.
- Access and set various accelerator run time configure parameters, failure report and invalid record of all system.
- Will store accelerator runtime data with an enhance channel archive system(under testing)
- Remote access from Internet and web based database access also could be applied.

Database System

- The hardware platform using SAN & database server cluster.
- Now we have tested on the MS SQL Server 2005 and will transfer to Oracle 10g with RAC later.

e-Log System

- Based on center database system
- Using Web2.0 Blog system
- Support RSS

Integrated with uniform authentication system

SSRF Control System

Three part of control system:

Linac, Booster, Storage Ring

Sub system

Magnet PS, Vacuum,

Modulator, e-gun, Transport Line(injection & extraction)

➤ Timing, MPS, RF, ID

System	device IOC		PV	
Power supply	585	26	65000	
Vaccum system	730	25	23298	
MPS system	25	3	16842	
Timing system	16	16	540	

PS Control System

Over 550 magnet power supplies are used at SSRF

^CAll magnet PS are digital controlled

- 2 types of digital controller used:
 - SINAP-developed digital PS controller:
 - served for LINAC, Booster and Transport Lines
 - > PSI-designed digital controllers (Purchased from DLS Co., Ltd):
 - served for Storage Ring and the Booster Ramp PS.
 - Waveform can be triggered to run with offset current and scaling factor.
 - The SSRF global timing system triggers the waveform to run at repetition of 2 Hz.

Performance of high stability and reliability has been demonstrated since SSRF commission.

Digital Power Supply Control system

Two kinds of systemEPICS integrated

Digital Power supply control system

Solution for SINAP designed controller

Solution for PSI-designed controller

PS Control System

Booster PS Control System - in house design

	AND BE AND		ueergn			X/home/dingjg/bsopi/ht_ps.edl			
		2 00		B	ooster-to	-Ring PS co	ntrol		
			AND	Magnet	Switch Setp	point Readback	Status		
				HT:CV-01	Power H01CVF	PS <mark>::H01CVP</mark> S	:H01CVPS-01:		
				HT:CV-02	Power H01CVF	PS	:H01CVPS-02:		
	proved proved		Kara -	HT:CV-03	Power H01CVF	PS	:H01CVPS-03:		
				HT:CV-04	Power H01CVF	PS	:H01CVPS-04:		
				HT:CV-05	Power H01CVF	PS H01CVP S	:H01CVPS-05:		
				HT:CH-01	Power H01CHF	PS H01CHP S	:H01CHPS-01:		
				HT-CH-02	Power H01CHF	PS-	:H01CHPS-02:		
				HT:CH-03	Power H01CH	PS-> H01CHP	:H01CHPS-03:		
	NI : /1 1: -:			HT:CH-04	Power H01CHF	PS- H01CHP S	:H01CHPS-04:		
				HT:CH-05	Power H01CHI	PS-	:H01CHPS-05:		
				HT:QUAD-01	Power H01QP	2S S:H01QP: 23	\$:H01QPS-01:\$		
				IT:QUAD-02	Power H01QP	PS- 🔁 S:H01QP: 23	S:H01QPS-02:S		
l		LA-PS:H01FCS-13 Details		HT:QUAD-03	Power H01QP	2S S:H01QP: 25	\$:H01QPS-03:\$		
	LA-PS:H01FCS-13			HT:QUAD-04	Power H01QP	2S- 🔁 S:H01QP: 23	\$:H01QPS-04:\$		
	Power	Digital Input	Device State	HT:QUAD-05	Power H01QP	2S <u>S:H01QP</u>	\$:H01QPS-05:\$		
	Power ON	Master Relay 01	PWM Output 08	HT:QUAD-06	Power H01QP	PS S:H01QP: PS	\$:H01QPS-06:\$		
	Current	Current Transducer FAULT	Power State OK	HT:QUAD-07	Power H01QP	2S	S:H01QPS-07:S		
	Set Current 17.555 Actual 17.61 Amps	Rack Water FAULT	ADC Check	HT:QUAD-08	Power H01QP	PS- S:H01QP: PS	S:H01QPS-08:5		
		Interlock OK	Comm Frame Check	HT:QUAD-09	Power H01QP	PS	\$:H01QPS-09:\$		
	Data	Ventilator OK	Comm Timeout	HT:QUAD-10	Power H01QP	PS- S:H01QP: PS	S:H01QPS-10:S		
		Chasis Door FAULT	Digital Input						
	Maximum Current 35 000 Amps	Load Water FAULT	Command Execution						
	DC Link Voltage	Load Temperature	Operation Prior						
	Load Voltage	Raw Value	Raw Value						
d	Current Ref/Readback diff.		Current Graph Close	660		Chanaba	ni 2000		
U				766	KΓ UN,	Jianyna	11, 2000		

Vacuum Control System

Device based on serial port

- > Vacuum Gauge: **VARIAN** Multi Gauge
- > Sputter Ion Pump: JJJvac Sputter Ion Pump Power Supply
- > RGA (Residual Gas Analyzer)
- Vacuum Valve
- PLC system

Serial Device Server: MOXA Nport 5610-16

- Total 53
- Front panel of NPort 5600 series

Rear panel of NPort 5600 series (AC Power)

Vacuum Control System

Vacuum Control System

Control of Insertion Devices

- 5 insertion devices in SSRF at this moment
 - > 2 In-vacuum undulators
 - ≻1 EPU
 - ➤ 2 wigglers
- A new model of embedded EPICS controller
 - ➢ Moxa UC7420
 - Intel Xscale CPU
 - Linux system
 - Integration remote control for motion control & coil power supplies control

The event timing system

- New event timing system
 - Structure is simple used broadcasting method
 - Low Jitter with distributed RF clock
 - Run on the EPCIS environment, base 3.14.x
 - Easy to extend
- Compact network based on characteristic event system.
- All EVRs are placed on timing crates and BI local stations
- All trigger outputs integrate withhardware interlocks

Control Group

RF & Timing Event Distribution

Master Signal Generater

RF Signal Distrubution Unit

Timing & Eent Signal Generator

Fiber (Om3) Distribution Unit

Performance

- The RMS jitter of gun trigger relative to RF reference is 10.72ps, which includes the jitter of e-gun and oscilloscope.
- The RMS jitters of other injection and extraction trigger are less the 30ps.
- Performance are satisfied with the requirements of physical design.

MPS System

SSRF MPS has three levels of protection.

Fast hardware interlock subsystem: 1mS

For beamline fast photon shutter protection

• custom-built TTL logic gate array circuit,

General hardware interlock subsystem: 30mS

Software interlock subsystem: 50~100mS

Diagram of fast hardware interlock controller

Fast interlock system

New controller

- > ARM/FGPA
- New PLC Mouduler@ Yokogawa FM3

The RF System control

- Linac RF system is in house design
- Booster RF is a turn key system
 - Integrated with EPICS system
- Integrated the whole storage ring RF system
 - > VME/PLC
 - ➢ EPICS

All the RF system can remote control at center control room

Linac RF Controller

SSRF Design **VME** Controller **MVME 5500 CPU VMIVME 2536** Digital 32 In/32 Out Ch **VMIVME 3125** Analog 32 Ch A/D **Isolated Interface** SSRF-Design EPICS Driver

RF Devices

Interface

Remote manage & debug

- •Video & Audio system based on network
- Device management
- •Remote monitor: VME, Switch, UPS etc
- Network management system
 - Based on SNMP
- •Email、SMS alarm system(Next)
- •EPICS gateway between ACS/BLCS
- •Control system Live CD

Host B's COM3, COM4, COM5

Host A's COM3, COM4, COM5

Center Control Room

HP7700 OPI PC(18) in the Control Room

- All the OPI run on the Linux Fedora 7 and in ssrf.ac.cn domain.
- OPI system running at control system uniform runtime environment.
- The edm file store on NFS file server and all the client can access it by a start script.

Conclusion

Set up a distributed controls system based on EPICS.

- All device control system had finished system construct, include install, online testing and software development.
- The LINAC, Booster and Storage Ring control system were finished and used in daily operation.
- High level physics application and control system OPI panel can run normally.
- The control system was successful during the machine commissioning. In general, most function of control have been reached on design goal.

Conclusion

- Uniform hardware and software design
- Ethernet everywhere with an uniform network
- Soft IOC used reduce the cost
- Industrial and commercial technique used widely
- Integration of IT technique

ACKNOWLEGEMENT

During our design of software and hardware, under construction of control system a, we have got a lot of help from many experts, specilists on the world such as SLAC, SLS, KEK, DIAMOND, Micro-Research, PAL etc. We appreciated for their sincere support.

Thank you for your attention!

