Developing for Eclipse/RCP/CSS

Kay Kasemir, Ph.D., ORNL/SNS kasemirk@ornl.gov July 2011 at KEK
Contents
T (e e [V T Ao] o IR PP PP PP PPPPPPPPPP 2
D= 1o Ty AT) PR PPPPPPPPPP 2
Is developing for RCP/CSS COMPICALEA?eeiiiiiiiei ettt ettt e e e e e e e e sabae e e estbeeeesareeeeeans 2
RCP: CoMPIEX, DUL SOUNG....uuuiiiiiiiiiiiiiiiiii s 3
SOUrCES Of INFOIMATION ...eeiiiiiiiiee et st e s e e s e s e e s 4
BOOKS .ttt e e e s e e s e e e st e e s sn et e e s aeeeeanreneeaan 4
[g=ToloTaTe [o] OSSP PP PP R PPPPPPPPPPR 4
Create (PIUg-iN) ProJECT oo 6
Java command-liNe “HellO”e et e s e s st e s e e 7
StANAAlONE GUI “HEIIO ...eeeeieeeeee ettt st e sttt e st e e st e s e b e e e snnee 9
RCP “HEIIO” VIBW ..ttt ettt ettt e ettt e e sttt e s ettt e s sab e et e s eanb e e e e snbeeeesanneeeens 12
CoNNECETO PVS oot 20
HOOKING INTO MENUSeiiiiiiiiiiiiiiittt s nnannan 24
PV CoNEXE MENU Probe’ ...t ettt st e s st e e e seabeeee s 26
Look at details in org.cstudio.Util. pVSCIIPT.....uue e 26

) U0 4 =TT 2PN 27

mailto:kasemirk@ornl.gov

Developing for Eclipse/RCP/CSS

Introduction
CSS is meant to be reasonably easy to understand for end users, with integration between tools that
was impossible with legacy EPICS tools.

For developers, this requires additional work. While it is easy to create a one-of, standalone application,
it is naturally harder to develop code that collaborates with other code. A properly developed RCP
plugin for CSS is started on demand within CSS by the user, then maybe closed, then re-opened, while at
the same time other CSS tools are opened and closed within the same instance of CSS. This requires
each CSS plugin to de-allocate its resources when closed down. A plugin should persist its state so that it
can re-open as it was left when CSS closed. Instead of hard-coded settings or maybe using environment
variables, utilize the Eclipse preference settings and offer a preference page to end users. Exchange
Process Variable names with other CSS tools, without actually knowing those other CSS tools while the
application is being developed.

Please contact me at kasemirk@ornl.gov with comments on this tutorial.

Definitions
e Eclipse IDE
Development environment for Java (also C++, JavaScript, Android, ...)
e Rich Client Platform, RCP
Originally to implement the IDE, but can be used to build other applications

e Plugins
Fundamental RCP building blocks
e (SS
An RCP application, plugins for control system tools &5 _‘2 "‘5
gils
Is developing for RCP/CSS complicated? |
Yes! %9
Compare to building a clock. & "40.8 .
4?)’\' '3&7 6
Everybody should once build a simple clock. 9 AR
Building your own clock from scratch is easier than interfacing a]
Simple Clock

complex clockwork. In fact most children learned to read a clock that

way. http://catalog.newtrendsonline.com/big_timetrade

12hour_demonstration learning clock-p-
End users, however, will prefer a clock that actually tells the time 48566.html
without first having to adjust the clock to the correct time. They may
even need a clock that displays several time zones, can indicated
upcoming appointment times, the phase of the moon, or other time-related information.

2

mailto:kasemirk@ornl.gov
http://catalog.newtrendsonline.com/big_timetrade_12hour_demonstration_learning_clock-p-48566.html
http://catalog.newtrendsonline.com/big_timetrade_12hour_demonstration_learning_clock-p-48566.html
http://catalog.newtrendsonline.com/big_timetrade_12hour_demonstration_learning_clock-p-48566.html

Developing for Eclipse/RCP/CSS

Creating such a clock for end users is obviously more difficult.

Similarly, developing code for Eclipse RCP / CSS is more involved than writing a standalone Java
program.

But your users will be able to tell the difference as well.

Internals of a clock that actually

keeps track of the time

http://homepage.mac.com/d halgren/WatchMvt
2.jpg

Astronomical clock, Prague

http://morfis.wordpress.com/2011/01/12/architectural-timepieces/

<
<

Design Patterns

Elements of Reusable

RCP: Complex, but sound

Anybody who looked at software engineering from 1994 until today Object-Oriented Software
has probably read a copy of the book “Design Patterns: Elements of Erich Gamma
Reusable Object-Oriented Software” by Erich Gamma et. al., which is E;ﬁgﬂ'?omlg:,

in its 38th printing in 2010. John Vlissides

Erich Gamma was an initial and long-time key developer for

Eclipse/RCP. While Eclipse/RCP is certainly complex, it is based on
many sound design decisions, so it may be well worth the time kR Xt e AN
required to understand it. Foreword by Grady Booch

z
7
&
@2
e
=
2
2
Z
=
=z
=
Z
@
2
A

http://homepage.mac.com/d_halgren/WatchMvt2.jpg
http://homepage.mac.com/d_halgren/WatchMvt2.jpg
http://morfis.wordpress.com/2011/01/12/architectural-timepieces/

Developing for Eclipse/RCP/CSS

Sources of Information

This document walks through the steps of creating a simple plugin for Eclipse RCP and CSS. It is meant to
give an example for the general idea, and offer a comparison of the difference in complexity when going
from a command-line tool to a standalone graphical tool to finally an RCP plugin.

This tutorial cannot replace a more in-depth study. Suggested sources of information:

e Books: Look for ‘RCP’ books, not basic usage of the IDE
o |IDE Help: Help Content, Platform Plug-in Developer Guide.
In the following, | refer to this as the IDE help.
e (CSSBook:
http://cs-studio.sourceforge.net/docbook,
http://cs-studio.sourceforge.net/docbook/css book.pdf
In the following, | refer to this as the CSS docbook.
e Google: Many developers use RCP.
A search will often lead to blog entries by Lars Vogel, http://www.vogella.de/

Books

McAffer, Lemieux, Aniszczyk, “Eclipse Rich Client Platform” seems to be a - the eclipse series
good overall introduction to RCP at this time.
It is based on the earlier versions of Clayberg, Rubel, “eclipse: Building Eclipse Rich Client Platform

Second Edition

Commercial Quality Plug-ins” and later “eclipse Plug-ins”.

McAffer, VanderLei, Archer also wrote “OSGi and Equinox” which has
details on the plugin architecture at the basis of Eclipse.

Preconditions

To get started, you need the following (with version numbers at the time of

this writing):

e Java JDK (1.6). You need a Java Development Kit. Your computer might already have a Java
Runtime Environment JRE, but you want a full JDK.

e Eclipse IDE for RCP Developers (3.6.x) from http://www.eclipse.org

e Source shapshot for one of the CSS products (http://www-linac.kek.jp/cont/css, or http://ics-
web.sns.ornl.gov/css/

After starting Eclipse, open the menu Window/Preferences and assert that you have a JDK as the default
choice under Java/Installed JREs:

http://cs-studio.sourceforge.net/docbook
http://cs-studio.sourceforge.net/docbook/css_book.pdf
http://www.vogella.de/
http://www.eclipse.org/
http://www-linac.kek.jp/cont/css
http://ics-web.sns.ornl.gov/css/
http://ics-web.sns.ornl.gov/css/

Developing for Eclipse/RCP/CSS

P T et

type filter text Installed JREs fro vy
Help -
Install/Update Mame Location Type Add... a0
Java 1l =hjdkl6.0_26 CA\Program Files\Java\jdk1.6.0 26 Standard WM Edit
I Appearance |:| ﬂjraﬁ C\Program Files\Java'jreb Standard VM |
Build Path Duplicate...
Code Style L
Compiler = Remaove

Editor 5

Installed JREs
Execution Envire
IUnit
Properties Files Editc L4
JProfiler

Pluag-in Develooment
4 mn 2

@ ok || cancel

You can go through the first 2 steps of the following tutorial with this setup. From then on, you will need
the CSS sources, so you may as well prepare that now.

Unpack the CSS sources into some directory. Read the CSS docbook section on “Compiling, Running,
Debugging CSS” for details on how to import the sources into your IDE workspace.

Then open for example the KEK *.product file, select “1. Synchronize” and “2. Launch an Eclipse
application” to start CSS from within the IDE:

[£ Package Explor &2 = O || & ess-kek.product &2 =08
e g = -

B s & Overview O-H-Bg@ —

a kbj’ org.csstudiokek.product =

[=i JRE System Library [jd
[» = Plug-in Dependencies

General Information
This sectien describes general information about the preduct,

8 src
[[icons 1D: kek
b & intro Version: 1.0.0
[+ [META-INF
E_-a build.properties Mame: Css
|@ css-kek.product| [¥] The product includes native launcher artifacts
|¥ intro_dataxml
#g plinf ~ || | Product Definition 3
%; p:ugfn_cu;:tomlzatlon This section describes the launching product extension identifier and application.
plugin.xm

| & splash.bmp = Product: [org.mtudio.kek.pmduct.pmduct v] [N.ew]

L—& org.csstudicogboek [102
E‘DJ’ org.csstudiologbook.sns Application: [org.mstudio.kek.pmduct.application VI
L—'& org.csstudiodogbook.ui [0 The preduct configuration is based on:) plug-ins @ features
Ebj’ org.csstudiodegging [108
'[C"DJ, org.csstudioegging.test Testing Exporting
L—"DJ- org.csstudio.ogging.ui [1
EZ!-'H’ ora.cestudio.nsls.produc 1. Synchronize this configuration with the Use the Eclipse Product export wizard to
9- ' P preduct's defining plug-in. package and export the product defined in this

= ; e [108

a7 org.csstudio.openfile [102 - -
jf_-n, arg.csstudio.opibuilder [1 2. Test the product by launching a runtime configuration.
i ’ s

L_—‘Djs org.csstudio.opibuilder.at instance of it
LJDJ, org.csstudio.opibuilder.cc @ Launch a RAP Application Te export the product to multiple platforms:
L—"Djs org.csstudio.opibuilder.er 2 Launch an Eclipse application 1. Install the RCP delta pack in the target =

TV W VWY WY VYWV W W W

Tef org.csstudio.opibuilder.fe Overview | Dependencies Configuration| Launching| Splash| Branding | Licensing

2 arn rectudin anikoilder w

Developing for Eclipse/RCP/CSS

Tutorial Steps

Create (Plug-in) Project
Select menu File, New Project ...

o - il
Stentns W i

& Plug-in Project

Select a wizard

| Create a Plug-in Project

|

r T

r - "
e

Create a new plug-in project

[~

Wizards:

| type filter text

I = CVS
a = Java
2% Java Project
£ Java Project from Existing Ant Buildfile
> = Mercurial
4 [= Plug-in Development
[Feature Patch
[Feature Project
.‘ﬁi Fragment Project
% Plug-in from Existing JAR Archives
| Plug-in Project |
¢<> Update Site Project

m

< Back |I Next = I | Finish

|

Cancel]

Project name: tutoria I|

Use default location

Location: | CACSS\RCPWorkspace\tutorial | | Browse...

Project Settings
Create a Java project

Source folder: src

Qutput folder bin

Target Platform
This plug-in is targeted to run with:

() an OSGi framework: |Equinnx v|

@) Eclipse version:

Working sets
Add project to working sets

Waorking sets: | Tutorial v| | Select...

@ [<Back | Finish [Cancel |

Select a Plug-in Project, call it “tutorial”, click Next and Finish without changing any of the other settings.

In the created tutorial project, right-click on the JRE System Library, select Properties and assert that it
uses the “Workspace default”, which should be a JDK.

{8 Package Explorer 53

- - " = - — X
P T

| Classpath Container| JRE System Library

Select JRE for the project build path.

System library

) Execution environment: |

- | [Envirenments...|

() Alternate JRE: [

- | [nstalled JREs... |

@) Workspace default JRE (jdk1.6.0_26)

g oral
i, JRE System Library [jdkl 6.0_26] ﬂ

Developing for Eclipse/RCP/CSS

Java command-line “Hello”
Right-click on the tutorial “src” directory, select “New”, “Package” to create a “tutorial” package unless
there is already one.

Right-click on the “tutorial”
Enter a Name: “CommandLineHello”, select “public static void main”, press Finish.

3w meor N ol
Java Class
Create a new Java class. @
Source folder: tutorial/src

Package: tutorial

package in the “src” directory, select “New”, “Class”.

[7] Enclosing type: Browse...
MName: CommandLineHello
Modifiers: @ public (0) default private protected
[Tl abstract []final static
Superclass: java.lang.Object
Interfaces: Add...
Remove

Which method stubs would you like to create?
public static void main(String[] args)
[] Constructors from superclass
[¥] Inherited abstract methods
Do you want to add comments? (Configure templates and default value here)

|:| Generate comments

@ [Finish] ’ Cancel]

In the main() routine of the generated CommandLineHello.java source code file, enter a command to
print hello. As a shortcut to typing “System.out.printIn”, you can simply type “sys” followed by Ctrl-
space which will open the Eclipse content assist system.

Developing for Eclipse/RCP/CSS

hll Styles~ 5
] Styles

package tutorial;

puoblic class CommandLineHello
{
f‘rr
* @param args
*f
public static void main(String[] args)

B syserr - print to standard error o
B sysout - print te standard out

B systrace - print current method to standard out

(c] System - java.lang

(c] SysexMessage - javax.sound.midi

(1} SYSTEM_EXCEPTION - org.omg.Portablelnterceptor
] SystemColor - java.awt

c] SystemEnvironment - com.sun.servicetag

[c2 SystemException - org.omg. CORBA

c] SystemFlavorMap - java.awt.datatransfer e
(£} Systemlcon - sun.awt.shel. Win325hellFolder2

@ Systermidentity - sun.security.provider S
Press 'Ctrl+Space’ to;how Template Proposals
g

.
System.out.println{);

Select the “sysout” entry and complete the source code to look as shown below.

| | E-\
package tutorial; -
public class CommandLineHello
{

_I,-":-c:-c
* @param args A
:-r",-" =
poblic =static voild main(String[] args)
{
| System.ouvt.println ("Hello™) ;
H
¥ | &
L
4 k
i = T
El Console i3 -I%IE“uEEIﬂE'Fﬂ"*:'E'
<terminated> CormmandLineHello [Java Application] C:\Program Files\Javaljdid 5.0_26\b
Hello -
L] }

Right-click on the source file, select Run As, Java Application, and the output should appear in the
“Console” view.

You can set a breakpoint on the System.out line by double-clicking in the left border of the editor. It
should add a blue ball to the left border.

Developing for Eclipse/RCP/CSS

= public static void main(String[] args)
{
I System.out.println ("Hellao™)

When you now select “Debug As” instead of “Run As”, you will execute the code in the debugger, which
will stop on that line, you can then single-step from there on etc.

Standalone GUI “Hello”

To create a version of “Hello” that opens a Window,

Select a Plug-in: -

i.e. has a graphical user interface, you need to use
some Java window library. Eclipse/RCP uses SWT, the -
Standard Window Toolkit. The tutorial plugin needs to | Matchingitems:

X - |
H H 4= org.csstudio.swt.chart (3.0.0.qualifier) l
be configured to use that SWT library. o ore et antowidgets (L0 2 quntfier] :
<= org.csstudio.swtxygraph (1.1.3.qualifier) i
. . T . -
Open the MANIFEST.MF file. On the “Dependencies” Wmomechipse sl (367,350
A= org.eclipse.swt.carbon.macosx.source (3.6.2.v3659b)
tab of the Plug-in Manifest Editor, press “Add...” and = org.eclipse.swt.cocoa.macosx.source (36.2:¥3659b)
. . ?iI*0rg.ecIipse.swt.cocoa.maconc.xsﬁ_&l.source(3.6.2.\;365%]
select the org.eclipse.swt plugin. You can narrow the - org.eclipse swh.gtk.aix.ppcbl source (3.6.233650b) i
. . i . R P
search to “*swt” to make it easier to locate that ergch |
g.eclipse.swt
plugin.
® [QK] i Cancel]
In the end, it should look as below with —

org.eclipse.swt listed as one of the Dependencies of your tutorial plugin:

f# Package Explorer &3 = O [J] CommandLineHello.java (-B *tutorial &5 =0
= - .
o s &z Dependencies O-F-EO
E‘cji org.csstudio.ui.menu.pvscript [1050
b‘J tutorial Reaui A
equired Plug-ins a Imported Packages
=i, JRE System Library [jdk1.6.0_26] Yz
=), Plug-in Dependencies Specify the list of plug-ins required for the Specify packages on which this plug-in depends
3 src operation of this plug-in. without explicitly identifying their originating plug-
in.
(== META-INF ¥ Add...
Lpk MANIFEST.MF Add...
@ build.properties
gt pluginaxml Remove
Up
Properties...
Down
Total: 1 Total: 0
L o ed Manag ioileparieino 1B + Dependency Analysis
4 1 | »
'l 1 || Overview lDependencies] Runtime| Extensions| Extension Points| Build| MANIFEST.MF| plugin.xml| 2

Developing for Eclipse/RCP/CSS

When you select the “MANIFEST.MF” tab you can see the raw file content that was created by the the
Plug-in Manifest Editor:

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: Tutorial

Bundle-SymbolicName: tutorial;singleton:=true
Bundle-Version: 1.0.0.qualifier
Bundle-RequiredExecutionEnvironment: JavaSE-1.6
Require-Bundle: org.eclipse.swt;bundle-version="3.6.2"
Bundle-Activator: tutorial.Activator
Bundle-ActivationPolicy: lazy

The key here is the “Require-Bundle: ...” line.

Similar to the CommandLineHello, create a GuiHello class by right-clicking on the “tutorial” package in
the “src” directory, select “New”, “Class”, entering a name of “GuiHello”, again selecting the “public
static void main” option, then press Finish.

In the empty main method, create an SWT main loop. This is easiest done by typing “mainloop”, then
pressing Ctrl-space to open the Eclipse content assist system and selecting the suggested SWT main loop
code.

Around the middle of that main loop code, add the Label code as shown below:

| GuiHellojava 53 =B
package tutorial; - H
bmpcrt org.eclipse.swt.layout.GridLayout;

import org.eclipse.swt.widgets.Display;
import org.eclipse.swt.widgets.5S5hell:;

public class GuiHello
{
public =static woid main(S5tring[] args)
{
Display display = new Display():
Shell =hell = new S5hell (display);
shell.zetlayout (new GridLavout(l, false)):
// Bdd this code to create a Label
x| Label hello = new Label(shell, 0); =
hello.setText ("Hello™)

shell.packl():
shell.openi):
while (!shell.isDisposed())
{
if (!display.readindDispatch()) displav.sleep():

display.dispose():

10

Developing for Eclipse/RCP/CSS

There should be an error indicator on the Label... line. When you hover your mouse pointer over the
error light-bulb in the left column, a popup will indicate “Label cannot be resolved to a type” because
the compiler is unclear what “Label” type to use.

If you right-click on the error light-bulb and select “Quick Fix”, a menu will appear that allows you to pick
“Import Label org.eclipse.swt.widgets”. Do not select the “awt” version of the Label type, pick the “swt”
type!

Project Run Window Help
B TR R [% Debug [Piugtn Dever)
Tl == = - -

£ GuiHellojava =32

package tutorial;

~ import
import
import

public
i

i

org.eclipse.swt.
org.eclipse.swt.
org.eclipse.swt.

class GuiHello

= public s=tatic woid

Display displaw

Shell shell

/ Bdd

new Shell (displavy)
shell . sectLayout (new GridLayout (1,

this code

lavout . GridlLavout;
widget=s.Display.
widgets.Shells

main (Stringl] args)

new Displawv ()

false)) :

to create a Label

Lebel hello — new BEUREl(shell, 0):

hello.secText ("Hel|

shell .packi) ;
shell.open () :
while (!shell.isDi)
L

if ('displawv.x]

display.dispose():

< Import 'Label’ (java.awt)

< Import 'Label' {org.eclipse.swt.widgets)

< Import 'Label' (com.sun.xml.internal.ws.org.objechweb.asm)
& Create class 'Label’

& Change to 'LabelUl' {javax.swing.plaf)

@ Change to 'LabelView' (javax.swing.text)

@ Change te 'Level’ (java.util.logging)

o Rename in file (Cirl+2, R

= Fix project setup...

If your code already contains a statement “import java.awt....”, delete that.

If you do not see the “mainloop” content assist, if you do not see “org.eclipse.swt.widgets” offered for
the label, check again that your plugin has org.eclipse.swt as a dependency and there are no other
errors indicated on the plugin project.

Finally, select Run As, Java Application. A new window will open that contains “Hello” as a text. You can
move that window around, finally close it.

static void main (String[] args)

e o

play play():
211 =8 Hello isplay):;
11.s ayout (1, false)):

So now we created both a command-line and a simple GUI version of a “Hello” program. The GUI
version clearly requires more code.

11

Developing for Eclipse/RCP/CSS

[J] CommandLineHellojava &2 GuiHello java &2 =0
package tutorial; - package tutorial; -
public class CommandLineHello import org.eclipse.swt.layout.GridLayout;

{ import org.eclipse.swt.widgets.Display:
Pk import org.eclipse.swt.widgets.Label;
= args import org.eclipse.swt.widgets.Shell;

public class GuiHello
{

public static void E(String[] args)
{
System.cut.println("Hellao™); public static woid main(String[] args)

{

Display display = new Display():
5hell shell = new Shell (display):
shell.setlayout (new GridLayout (1, false)):

// Bdd this code to create a Label
Label hello = new Label (shell, 0);
hello.setText ("Hello")

zhell.pack():
shell.open();
while (!'shell.i=sDisposed())
{
if (!displayv.readindDispatch(}) display.sle

display.di=spose();

The next step will be a GUI version of Hello that integrates with Eclipse RCP/CSS.

RCP “Hello” View

Instead of opening a new, standalone window, this version will display “Hello” within Eclipse/CSS, as a
View similar to the Console view. A view that we can move around within CSS. When restarting CSS, it
will remember the last location of our view, unlike the standalone window that always appears at some
default location, not remembering its last position and size.

Instead of opening a display and top-level shell in our own code, we depend on Eclipse/CSS to open the
main window. We also let Eclipse handle the main loop. All we contribute is a View for Eclipse to display.

The way to interface with RCP, with other plugins in general, is through Extension Points. In this
example, we use an Extension Point “Views” offered by the Eclipse user interface to add a view.

In the tutorial Plug-in Manifest Editor, select the “Dependencies” tab.
Remove the dependency on the org.eclipse.swt plugin. Instead, add dependencies to

e org.eclipse.core.runtime
e org.eclipse.ui

12

Developing for Eclipse/RCP/CSS

'E‘ tutorial &2 1 tutorial 11t org.eclipse.ui &2
%: Dependencies % Dependencies
Required Plug-ins a
Required Plug-ins 12 %
Z Specify the list of plug-ins required for the operation of
Specify the list of plug-ins required for the cperation of this plug-in.
this F'IUQ_'”' El::?org.eclipse.core.runtime [3.2.0,4.0.00 Add...
H v v H e i
3iorg.eclipse.core.runtime (3.6.0% Add... ;limg'ec”pse'.sm [50400) Remove
?;I:Drg eclipsean (.6.3) ;l:org.ecllpse.]face [3.5.0,4.0.0)
- _ — org.eclipse.ui.workbench [3.5.0,4.0.0
== org.eclipse.core.expressions [3.4.0,4.0
=
Properties...
Down
1 UlJ " | Total: 5
Total: 2

It should look similar to the left screenshot shown above.

When you double-click on the org.eclipse.ui entry, Eclipse opens the Plug-in Manifest Editor for the
org.eclipse.ui plugin, as shown to the right above. In the Dependencies tab of org.eclipse.ui, notice that
it depends on org.eclipse.swt.

So we have this dependency hierarchy: Tutorial -> org.eclipse.ui -> org.eclipse.swt

We no longer need a direct entry for org.eclipse.swt because we get that from depending on the
org.eclipse.ui plugin.

13

Developing for Eclipse/RCP/CSS

-@tutorial
44 Extension Points

7t arg.eclipsei 53

All Extension Points

Edit extension points defined by this plug-in in the
following section,

=i preferencePages

=i preferenceTransfer
=i presentationFactories
=i propertyPages

=il services

=i splashHandlers

=i startup

= statusHandlers

=i systemSummarySections
=il themes

=] viewhctions

= workingSets

=i browserSupport
=il internalTweaklets
=l installationPages

m

=i propertiesView

=il popupMenus || Add...

=8
O-%~-%0®
Extension Point Details
Set the properties of the selected extension peint.
D views
Mame: %ExtPointviews
Schema: schema/views.exsd Browse...

% Show extension peint descripticn

-@ Open extension point schema

% Find references

Owverview | Dependencies | Runtime | Extensions | Extension Points | MANIFEST.MF | plugin.ml

Look at the Extension Points tab of org.eclipse.ui. Locate the “views” extension point. You may click
“Show extension point description” and browse through that. In principle, it has all the information for
using that extension point. But it can be hard to understand for newcomers.

Going back to the Plug-in Manifest Editor for the tutorial plugin, open the Extensions tab.

14

Developing for Eclipse/RCP/CSS

@ *tutorial £3 .@; org.eclipse.ui]

% Extensions

All Extensions lﬂz =
Defi!we extensions for this plug-in in the following
section.

type filter text
Add...

Extension Point Selection

3 e I
Create a new Views extension. D y

Extension Points | Extension Wizards

Extension Point filter:

={ org.eclipse.uithemes &
={ org.eclipse.uiviewActions

Remove

Up

Down

Overview | Dependencies | RuntimelE(tensionsJ Extension

= org.eclipse.ui.views
={ org.eclipse.ui.workingSets

™

Show only extension points from the required plug-ins
Extension Point Description: Views

This extension point is used to define additional views for the workbench. Aviewis »
avisual component within a workbench page. ltis typically used to navigate a
hierarchy of information (like the workspace), open an editor, or display properties
forthe active editor. The user can make a view visible from the Window = Show View
menu or close it from the view local title bar.

[T

Awvailable templates for views:

22 Sample View

@ < Back Next > Fish | | Cancel |

“Add” an extension to the org.eclipse.views extension point. In the extension point selector, you could

select the “Sample View” template, but for this tutorial press “Finish” without selecting it.

To implement the extension point, the editor will indicate that you must provide an id, name and class.
Enter the names shown below:

@: org.eclipse.ui a:*tulorial &8
9 B

“ Extensions

All Extensions

Define extensions for this plug-in in the following section.

type filter text

=8

laz = Extension Element Details

id*: tutorial.helloview

4 = org.eclipse.uiviews
|® Hello View (view] |

category:

icon:

fastViewWidthRatio:
Down

name™ Hello View

. . .
class™; tutorial.HelloViewPart
Up

O-B~-%@

Set the properties of "view", Required fields are denoted by "*".

allowMultiple: [

restorable: [true

Overview Dependencies|Runtime Extensions | Extension Points|Bui|d|MANIFEST.MF pluginxml | build.properties

15

Developing for Eclipse/RCP/CSS

You can also check the plugin.xml tab of the editor. It will show the raw XML description of our
extension point, and it should look like this:

<plugin>
<extension point="org.eclipse.ui.views">
<view id="tutorial.helloview"
class="tutorial.HelloViewPart"
name="Hello View"
restorable="true">
</view>
</extension>
</plugin>

This XML content is explained in the extension point description. Usually, however, it is sufficient to use
the other tabs of the editor to view and modify the extension point info, so return to the “Extensions”
tab.

When you click on the blue “class*:” link, a new class wizard will open because that class
“tutorial.HelloViewPart” does not exist, yet.

16

Developing for Eclipse/RCP/CSS

‘| Java Class
' ||
Create a new Java class.

Source folder: tutorial/src Browse...
Package: tutorial Browse...
["] Enclosing type: Browse...

Mame: HelloViewPart

Modifiers: @ public () default private protected

[abstract [|final static
Superclass: org.eclipse.ui.part.ViewPart Browse...
Interfaces: Add...

Remove

Which method stubs would you like to create?
0 public static void main(String[] args)
Constructors from superclass
Inherited abstract methods
Do you want to add comments? (Configure termplates and default value here]

|:| Generate comments

@ Finish | [Cancel

If you had carefully read the extension point description, you would remember that the class provided
for the views extension point should extend the org.eclipse.ui.part.ViewPart class. Note how the class
wizard is already pre-populated with ...ViewPart as the Superclass. Press Finish.

Edit the code to look like this:
package tutorial;
import org.eclipse.swt.widgets.Composite;

import org.eclipse.swt.widgets.Label;
import org.eclipse.ui.part.ViewPart;

17

Developing for Eclipse/RCP/CSS

public class HelloViewPart extends ViewPart

{
@Override
public void createPartControl (Composite parent)
{
// Create the label, similar to the GuiHello example,
// using the 'parent' provided by Eclipse/RCP
Label hello = new Label (parent, 0);
hello.setText ("Hello");
}
@Override
public void setFocus ()
{
// Nothing to do
}
}

Note that you fundamentally just add the Label... code inside createPartControl(). If there was a

HelloViewPart constructor, you can delete it. The setFocus() must remain, even though it is empty.

How do we run our tutorial plugin within Eclipse/CSS?

You need to have at least once executed some CSS product, for example the KEK version of CSS, as

mentioned in the Preconditions section on page 4. From the menu Run, Run Configurations..., locate the

run configuration for your product. On its Plug-Ins tab, add the tutorial plugin. This will be easier after

entering a filter like “*tut” to reduce the very long list of available plugins to the one you are looking for:

Create. manage. and run configurations

Create a configuration to launch an Eclipse application.

CEx%X B3~
type filter text

4 Eclipse Application
& AlarmConfigTool.product
@ AlarmServer.product
& ArchiveConfigTool.produci
& css-kek.product
& CSSproduct
& IMS2RDB. product
& New_configuration
& SNS_CSS.product
Java Applet
Java Application
Ju JUnit
% WUnit Plug-in Test
#% 0SGi Framework
[RAP Application
RAP JUnit Test
J¥y Task Context Plug-in Test
Juy Task Context Test

4 [] »

Name: ~ css-kek.product

=] Main (9= Arguments <% Plug-ins . 57 Configuration| £ Tracing | B Environment| =] Common

@

Launch with: plug-ins selected below only v| Defautt Start level: 4 Default Auto-Start: [false |
*t
u Select All
Plug-ins Start Level Auto-Start
Deselect All
4 [@ %] Workspace
4= tutorial (1.0.0.qualifie default default Add Working Set...

[#|Include optional dependencies when computing required plug-ins

[] Add new workspace plug-ins to this launch configuration automatically

[Validate plug-ins automatically prior to launching

Add Required Plug-ins
Restore Defaults

[T] Only show selected

191 out of 578 selected

Validate Plug-ins |

Apply Revert
Filter matched 34 of 34 items =
®
| — — — —— —— —_— J

You can press “Validate Plug-Ins”, there should be no error. Press “Run”.

18

Developing for Eclipse/RCP/CSS

Your CSS product should start and look like before.
So where is the new “Hello” View?

Your tutorial plugin offers a new “Hello” view to
Eclipse/RCP/CSS. But nothing is automagically opening it. A
user has to actually request to see your view.

This can be done via the menu Window, Show View, Other...
where the “Hello View” will appear towards the end under
“Other”.

If we had defined a Category for our view, we could have
placed our view in the CSS category. Check the plugin.xml file
of for example org.csstudio.utility.clock which defines a
category for its view.

After opening your “Hello” view, it should now appear within
CSS. You can move it around just like any other Eclipse view.
When restarting CSS, it will remember the location and size of
the Hello view:

1 Showview L e

(5 Clock -
E EPICS PV Hierarchie
E%G'] Export Samples
4" Inspect Samples
|4, Inspect Waveforms
IMS Monitor
Message History
Ly Post Analyzer
, Probe
RDE Shell
B Therapist
= Help
= Other
ADL Tree View =
[Hello View -

m

[ok || Cancel

Lo —— T

File Edit €55 Window Help
ME 8% BiE H-5-ie
5 iz OPlEditor o7 Data Browser

5. Navigator &2 =8j|le Therapist 33]

= B |5 Clock 2@] =8

| B% 7| aa
[BOY Bxamples CREATIVE COMPUTING
[CS5 Muorristown, New Jersey
adapted for IMEM PC by
PATRICIA DAMNIELSOMN AND PAUL HASHFIELD
Patricia Danielson and Paul Hashfield
Java version February 24th, 1999
l By Jesper Juul - jj@pobox.com.

HI!' I'M ELIZA. WHAT'S YOUR PROBLEM?
DOES THAT QUESTION INTEREST YOU?

result!
Y¥OU ARE BEING A BIT NEGATIVE.

=Where is my new "Hello" view from the tutonal?

=Yes, Ispent all the time in the tutorial and cannot find the

»

m

5 Hello View &2]—:EI

Hello

This step in the tutorial is quite long, and it certainly covers a lot of RCP detail: plugin dependencies, the
‘views’ extension point and how to implement it, finally adding a plugin to a run configuration and

opening a view.

19

Developing for Eclipse/RCP/CSS

[1) GuiHellejava 32 [J| HelloViewPartjava &2 =8
package tutorial: - package tutorial: -
import org.eclipse.swt.layout.GridLayout;[] = import org.eclipse.swt.widgets.Composite;
import org.eclipse.swt.widgets.Label;
public class GuiHello import org.eclipse.ul.part.ViewPart:
i
= public static wold main(String[] args) public class HelloViewPart extends ViewPart
{ {
Display display = new Displav(): = BCverride
Shell shell = new Shell (display): public wvoid createPartControl (Composite parent)
shell.setLayout (new GridLayout(l, false)): { L

/ Create the label, similar to the GuiHello example,

/ BAdd this code to create a Label // using the 'parent'
Label hello = new Label (shell, 0); Label hello = new Label (parent,

helloa.secText ("Hella") ; hello.setText ("Hella™) ;

shell.pack():

shell.open(); = BCverride
while (!shell.isDisposed()) =l public void setFocus ()
i {
if ('display.readAndDispatch()) display.sleep(): /{ Nothing to do
} H ||
display.dispose(): H -
} 4 3
}
l@tutoria\ pixy

<?xml version=

<?eclipse versiol
<plugin>
<extension
point="org.eclipse.ui.views">
<view
class="tutorial.HelloViewPart"
id="tutorial.helloview"
name="Hello View"
reatorable="true">
</view>
</extension> —
</plugin> e

m

.] r

4 3 Overview ‘ Dependencies ‘ Runtime ‘ Extensions | Extension Peints Ip\ugin.xml] buwld.propertie;| s

When you compare the standalone GuiHello.java to the code required to implement the view, there is
not much more code required. The essential Label... section is essentially the same. The learning curve
for creating the view is steep, but at the same time the result is something that integrates with other
views, where the framework restores the size and location on restarts.

Connect to PVs

The Hello view example was static. In this section, we will extend it to display the changing value of a PV.
For simplicity, the PV name will be fixed.

CSS offers several ways of accessing PVs. A straight forward API for creating individual PVs and listening
to their updates is the utility.pv API described in the docbook Part Il. Plug-in Reference, PV Access -
org.csstudio.utility.pv.

First, you need to add a dependency on the org.csstudio.utility.pv plugin to the tutorial plugin:

20

Developing for Eclipse/RCP/CSS

41+ tutorial 57

%z Dependencies

Required Plug-ins 12
Specify the list of plug-ins required for the operation of this plug-in.
@ - :]
Soseinenton S
al:sorg.csstudio.utility.pv (3.0.0) \M]
Up
Down
Properties...

In HelloViewPart.java, change theLabel ... code such that the label is a field of the class that we can
later update with the current value of the PV.

You can most easily accomplish this by right-clicking on the original “hello” Label variable name,
selecting Refactor, “Convert local variable to field” and entering value_display as the field name.

Or edit it the hard way. In the end, it should look like this:
private Label value display;

@Override
public void createPartControl (Composite parent)
{
value display = new Label (parent, O0);
value display.setText ("Hello");

Now add the code to connect to a PV, using this (i.e. the HelloViewPart class) as the listener:

try

{
PV pv = PVFactory.createPV("sim://ramp") ;
pv.addListener (this);
pv.start();

}

catch (Exception e)

{
e.printStackTrace() ;

}

There will be an error on the addListener() call because the HelloViewPart class is not a valid PVListener.
Right-click on the error light-bulb, select Quick-Fix, “Let ‘HelloViewPart’ implement ‘PVListener’”.

21

Developing for Eclipse/RCP/CSS

Next there will be an error on the HelloViewPart class because it is missing the actual implementation of
the PVListener interface. Again use the Quick-Fix to “Add unimplemented methods”.

This will add the skeleton for the methods pvValueUpdate and pvDisconnected.

Implement them like this:

@Override
public void pvValueUpdate (PV pv)
{
final String value = "PV " + pv.getName () +
" has value " + pv.getValue().toString();
value display.setText (value);

}

@Override
public void pvDisconnected (PV pv)
{
// Ignored
}

When you now run CSS and open the Hello View, we might expect to see the “Hello” text replaced with
a text like “PV sim://ramp has value 2011/07/06 13:13 2.0”. In fact, there will be no updates. You can
close CSS again. Check the “Console” view of the IDE. There will be this type of error:

Exception in thread "ramp" org.eclipse.swt.SWTException:
Invalid thread access
at org.eclipse.swt.SWT.error (SWT.java:4083)
at org.eclipse.swt.SWT.error (SWT.java:3998)
at org.eclipse.swt.SWT.error (SWT.java:3969)
at org.eclipse.swt.widgets.Widget.error (Widget.java:468)
at org.eclipse.swt.widgets.Widget.checkWidget (Widget.java:359)
at org.eclipse.swt.widgets.Label.setText (Label.java:387)
at tutorial.HelloViewPart.pvValueUpdate (HelloViewPart.java:42)
at org.csstudio.utility.pv.simu.BasicPV.changed (BasicPV.java:84)

Similar to most GUI toolkits (AWT, Swing, Qt,...), SWT only allows access to the user interface elements
(Label, Shell, ...) from the main thread that also creates the GUI and executes the main loop. The PV
value updates on the other hand can arrive on other threads, for example an EPICS Channel Access
client thread.

Every GUI toolkit has some mechanism that allows arbitrary threads to schedule GUI updates on the
correct main thread. With SWT, you need to use the Display.asyncExec(Runnable) API. A corrected
version of the pvValueUpdate looks like this:

@Override
public void pvValueUpdate (PV pv)
{
final String value = "PV " + pv.getName () +
" has value " + pv.getValue() .toString();
// Perform GUI update on display thread

22

Developing for Eclipse/RCP/CSS

value display.getDisplay () .asyncExec (new Runnable ()
{

@Override

public void run ()

{

value display.setText (value);

When you now start CSS and open the Hello view, it should display changing PV data.

You will still, however, notice a problem when you close the Hello View. Since we do not stop the PV,
our code will continue to attempt updates to our view even though the view is long gone. When exactly
this happens can vary. Eclipse will not right away delete your view classes when a user closes the view,
because after all the user may re-open the view soon. But eventually Eclipse will delete the view, and
then errors like this start to occur:

Exception in thread "ramp" org.eclipse.swt.SWTException: Widget is disposed
at org.eclipse.swt.SWT.error (SWT.java:4083)
at org.eclipse.swt.SWT.error (SWT.java:3998)
at org.eclipse.swt.SWT.error (SWT.java:3969)
at org.eclipse.swt.widgets.Widget.error (Widget.java:468)
at org.eclipse.swt.widgets.Widget.getDisplay (Widget.java:582)
at tutorial.HelloViewPart.pvValueUpdate (HelloViewPart.java:43)

A properly written plugin needs to clean up when it is closed. One way to do this is by adding a dispose
listener that notifies us when the view is closed.

In completeness, our view code with PV updates could look like this:

public class HelloViewPart extends ViewPart implements PVListener
{

private Label value display;

@Override
public void createPartControl (Composite parent)
{
value display = new Label (parent, O0);
value display.setText ("Hello");

final PV pv;

// Create and start PV

try

{
pv = PVFactory.createPV("sim://ramp") ;
pv.addListener (this) ;
pv.start();

}

catch (Exception e)

{ // For tutorial, just print error
e.printStackTrace();
return;

23

Developing for Eclipse/RCP/CSS

// When the view is closed, stop the PV
parent.addDisposelistener (new DisposelListener ()
{
@Override
public void widgetDisposed (DisposeEvent e)
{
pv.stop();
}
1)
}

@Override
public void setFocus ()

{
// NOP

}

@Override
public void pvValueUpdate (PV pv)

{
final String value = "PV " + pv.getName () +
" has value " + pv.getValue().toString();
// Perform GUI update on display thread
value display.getDisplay () .asyncExec (new Runnable ()

{
@0Override
public void run()

{

value display.setText (value);
}
1)
}

@Override
public void pvDisconnected (PV pv)

{
}

Hooking into menus
To invoke our view, we have to use the generic menu Window, Show View, Other...

Most CSS views have an entry in the more obvious CSS menu, for example CSS, Utilities, Clock to open
the clock.

To add a menu, you again use Eclipse extension points, this time org.eclipse.ui.menus. The process has

actually three steps:

1. Addthe GUI element entry (main menu, context menu, toolbar, ...) to invoke a command. This
tells eclipse where and how to display the desired item to the user.

24

Developing for Eclipse/RCP/CSS

2. Create the command. This is an abstract description of what you want to accomplish, like “open
aview”. The same command can be invoked by many means: Menu, toolbar, keyboard shortcut,

programmatically.

3. Implement the handler. The command only describes what to do. It doesn’t do anything. A
handler performs the actual action. Eclipse allows more than one handler, and there are ways to

select which handler to use.

Overall, this separation of GUI, command, handler is very flexible, but initially it can be very confusing.
The CSS docbook chapter in Part Il. Plug-in Reference, CSS menus - org.csstudio.ui.menu gives brief

examples for adding menu entries to the CSS menu.

For our purpose, we want to add an entry to the CSS Utilities menu, which has a menu path of menu:
utility. The command to open a view is actually already pre-defined by Eclipse, and so is a handler for it.
We only need to refer to the existing Eclipse command, which takes the name of the view to open as a

parameter.

In short, adding this to the tutorial plugin.xml file allows opening our view from the CSS/Utilities menu:

<extension point="org.eclipse.ui.menus">

<menuContribution
allPopups="false"

locationURI="menu:utility">

<command

commandId="org.eclipse.ui.views.showView"

label="Hello"
style="push'">
<parameter

name="org.eclipse.ui.views.showView.viewId"
value="tutorial.helloview">

</parameter>
</command>
</menuContribution>
</extension>

Similar to adding a view, this is not really much
code: We obviously need to add some type of
“menu” entry, specify where it should appear
(menu:utility), and what it should do
(showView, the one with ID tutorial.helloview).

The approach is very flexible. The CSS
application code defines where exactly
“menu:utility” appears and how. The main

= B
[: Customize Perspective - CS =Sl

Tool Bar Visibility | Menu Visibility | Command Groups Availability | Shortcuts|

Choose which menu items to display.

Menu Structure:

@ File
@ 5 Edit
ss
Display
Alarm
Diagnostic Tools
Debugging
Utilities
+) Clock
@ Therapist
Helle
Trends
& Web Links
=] Preferences...

Window
Help

[Filter by command group

o]|

Cancel

Developing for Eclipse/RCP/CSS

CSS/Utilities menu entry could be moved to a different location, the name “Utility” could be renamed to
a localized text. Our plugin will still work.

At runtime, users can right-click on the CSS toolbar, select “Customize Perspective” and then disable our
menu entry if they prefer not to see it. Or they can define a keyboard shortcut if they want even faster
access to our view.

But there is certainly a steep learning curve until a developer knows all the details behind those few
lines of XML markup in the plugin.xml file to define a menu.

PV Context menu ‘Probe’
Another very powerful feature of Eclipse is the idea of menu contributions to popup (context) menues
based on the currently selected data type.

For example, “Probe” appears in the context menus of BOY widget, Data Browser channel names, ... It
appears in the context menu of any CSS application that deals with process variables. When selected,
Probe will be started, receiving the PV name.

To learn about this, refer to the CSS docbook chapter in Part Il. Plug-in Reference, CSS menus -
org.csstudio.ui.menu, the section called “Process Variable popup-menu”, and compare that to the
plugin.xml code of org.cstudio.diag.probe.

Look at details in org.cstudio.util.pvscript
The plugin org.cstudio.util.pvscript is very small but it includes several interesting features:

1. Online help
The tool contributes online help in a straight forward way.

2. PV Script appears in context menus for Process Variables, similar to Probe.
While Probe, however, always just creates a “Probe” entry in the context menu, i.e. one static
entry, the PV Script tool creates zero or more entries, one for each configured script.
It implements a dynamic context menu.

3. PV Script has preference settings and a preference GUI. Refer to the CS docbook Part |,
Hierarchical Preferences. Usually, preferences are simple true/false, numbers or string settings.
The PV Script util on the other hand has a complex preference: A variable-length list of script
names with descriptions. It needs to encode and decode this list from the plain string that is
stored in the preferences.

The PV Script plugin does not contain much code, so it can be a good example for studying the above
items.

26

Developing for Eclipse/RCP/CSS

Summary
In summary, Eclipse/RCP/CSS is complex but very powerful. Any attempt to learn it in “10 easy steps” is

futile. It would be like building the toy clock mentioned above.

This was supposed to show some of the ideas, and then you need to study an RCP book and examples.

Please contact me at kasemirk@ornl.gov with comments on this tutorial.

27

mailto:kasemirk@ornl.gov

