Positron Production Experiment with Single Crystal (Preliminary Results) [1st. Part: for KEK Exp.] [2nd. Part: for CERN Exp. (in Separate Presentation)]

Kazuro Furukawa, KEK

<kazuro.furukawa@kek.jp>

for

Collaboration group of S.Anami, A.Enomoto, K.Furukawa, K.Kakihara, T.Kamitani, H.Okuno, Y.Ogawa, A.Ohsawa, T.Oogoe, T.Suwada [KEK], R.Chehab [LAL, Orsay], R.Hamatsu, K.Sasahara [Tokyo Metro. Univ.], T.Fujita, K.Umemori, K.Yoshida [Hiroshima Univ.], V.Ababiy, A.P.Potylitsin, I.E.Vnukov [Tomsk Polytech.]

<URL:http://www-linac.kek.jp/chan-pos/>

- Positron Generation Enhancement by Channeling Radiation and Coherent Bremsstrahlung Using Single Crystal (Tungsten or Diamond)
- Suggested by R. Chehab (LAL) et al, 1989
 - Technical Issues -- Vacuum, Cooling (because of Goniometer)
 - Thick Crystal Production
- Thickness Dependence
- Incident and Outgoing Energy Dependence
 - Mosaicity
 - Instant and Integrated Radiation Hardness of Crystal
- Composite Target (Crystal/Amorphous, Diamond+Tungsten)
- Simulation Code Development for Positron Generator Design (GEANT+Channeling, Fast Code, Heating, e+ Capturing)

Channeling and Coherent Bremsstrahlung

 In single crystal these two phenomena enhance e.m. shower (photon) and positron yields

Beam Experiment in Japan

◆ INS ES 1GeV (-1999)

KEK Linac 3-GeV Experiment (1998)

Enhancement Confirmation

 KEK Linac 8-GeV/4-GeV Experiment (2000-) More Quantitative Considerations

Collaboration

Tomsk Polytech. --- Crystal Production, Simulation Code
Tokyo Metro. Univ., Hiroshima Univ., KEK
Beam Line Construction, Detector Design, Simulation
R. Chehab --- Ideas, etc.

Experiment Stations

K.Furukawa, LC2002, Feb.2002.

- 8 and 4 -GeV Experiment at KEK Linac Analyzer Line at the End of Linac No Direct Interference against KEKB, PF, PFAR Operation ◆ 8-GeV 0.2nC (~1x10⁹) 10ps \diamond 2.2mm (=0.63 Radiation Length (r.l.)) Crystal (r.l. = 3.4 mm for Tungsten)Then 5.3mm, 9.0mm Thick Crystal Measured Enhancement
- 4-GeV 2.2mm, 5.3mm, 9.0mm Crystals Also 1.1mm Diamond

8 and 4 -GeV Experiment Apparatus

Goniometer Lucite Cerenkov Counter Lead Glass Cerenkov Counter

Positron Production Experiment with Crystal

K.Furukawa, LC2002, Feb.2002.

Rocking Curves (8GeV)

2.2mm, 5.3mm, 9mm W Crystal FWHM ~9mrad, ~20mrad, ~39mrad

Enhancement Factors (8GeV)

Outgoing e+ Momentum [MeV/c]	Enhancement (2.2-mm-thick)	Enhancement (5.3-mm-thick)	Enhancement (9.0-mm-thick)
10	6.5 ± 0.6	3.4 ± 0.7	2.3 ± 0.4
15	6.2 ± 0.8	3.2 ± 0.5	2.0 ± 0.2
20	5.1 ± 0.5	3.0 ± 0.5	1.8 ± 0.2

K.Furukawa, LC2002, Feb.2002.

Positron Yields Enhancement (8GeV)

Positron Production vs. Thickness

Out-going Positron Momentum 10, 15, 20 MeV/c 9mm Crystal Generates More e+ than Thick Amorphous

Positron Enhancement with 4GeV Incident Beam 2.2, 5.3, 9 mm-thick Tungsten Crystal and Amorphous (Preliminary Analysis)

K.Furukawa, LC2002, Feb.2002.

Positron Enhancement with 4GeV and 8GeV 2.2, 5.3, 9 mm-thick Tungsten Crystal and Amorphous (Preliminary Analysis)

K.Furukawa, LC2002, Feb.2002.

Optimal Thickness and Brightness

Theoretical Work by V.N.Baier, V.M.Katkov, and V.M.Strakhovenko Phys. Stat. Sol. 133(1986)583

Optimal Thickness Thickness of satulated radiation brightness

(at 1GeV, Energy dependence is small)

Table 1

Parameters of the potential for the $\langle 111 \rangle$ axis and some characteristics of the radiation

erystal	$u_1 (10^{-10} \text{ m})$ T = 293 K	<i>V</i> ₀ (eV)	U ₀ (eV)	β	$a_{z} (10^{-10} \mathrm{m})$	$c = rac{L_{ m rad}}{L_{ m ph}}$	R	ω _{eh} (MeV)	L_0 (mm)
((d))	0.040	29	103	0.025	0.326	0.61	1.87	21.1	156.6
Si	0.075	51	106	0.150	0.30	0.57	0.80	23.3	15.3
V	0.082	135	280	0.135	0.306	0.49	1.16	37.0	4.8
Cr	0.061	165	358	0.122	0.272	0.48	1.04	47.0	3.6
\mathbf{Fe}	0.068	180	363	0.145	0.276	0.48	1.46	46.6	3.15
Ge	0.085	91	191	0.13	0.30	0.51	0.53	31.1	4.3
W(2293K	ð) 0.020	417	937	0.115	0.215	0.50	1.48	96.2	0.65
W (77 K)	0.030	348	1255	0.027	0.228	0.50	2.38	105.0	0.61

 u_1 amplitude of thermal vibrations. V_0 , β , a_s parameters of the potential (6), U_0 depth of the potential well.c ratio of the radiation length to the effective length of photon absorption, $R: I_{as}/I_{1:T}$ ratio at $\epsilon_0 = 1$ GeV, ω_{ch} frequency calculated by means of (16) at $\epsilon_0 = 1$ GeV, L_0 optimal thickness of the crystal at $\epsilon_0 = 1$ GeV.

 Brightness at Optimal Thickness

Diamond Produces 3-Times Larger Radiation than Tungsten

Fig. 5. The brightness at optimal thickness in Ge, W, Si, Cr, and diamond as a function of the initial electron energy

Diamond Target and Positron Enhancement

 1.1mm-thick Diamond + Tungsten Diamond as Photon Emitter, Tungsten as Pair Producer
 at 4 GeV and 8 GeV (Preliminary Analysis)
 Far from Optimal Thickness (We need 10mm Diamond)

K.Furukawa, LC2002, Feb.2002.

Heating

 Simulation by R.Chehab, et.al Particle Accelerators 59(1998)19
 21mm Amorphous, 8mm Crystal, 4mm Crystal + 4mm Amorphous

	e ⁻ for 5x10 ¹¹ e ⁺ at IP	BeamPower (kW)	Target Power (kW)	Target Peak Temp. (°C)
8mm W(crys.) 4mm W(crys.) + 4mm W(amor.)	5x10 ¹¹ 5x10 ¹¹	120 120	6.6 6.7	1400 489(crys.) 2184(amor.)
21mm W(amor.)	3.3x10 ¹¹	79	27.0	2102

10GeV 150Hz, JLC(1995)-like System Assumed

Summary

Positron Production Enhancement with W Crystal was Measured

Dependencies on

Incident Energy (4, 8 GeV),

Target Thickness (2.2, 5.3, 9, etc mm)

Out-going Positron Energy (5,10,15,20 MeV)

- With Thin (2.2 mm) Crystal 5-Times Enhancement was Observed
- Yield from 9mm Crystal was Larger than 15-28mm Amorphous
- The Results will Help Refining Simulation Codes
- Diamond Compound (Thick Diamond+Tungsten) Target May be promising
- Need More Heating Simulation