Positron-Production Experiment Using 8-GeV Channeling Electrons in a Crystal-Tungsten Target

T.Suwada, S.Anami, A.Enomoto, K.Furukawa, K.Kakihara, T.Kamitani,Y.Ogawa, S.Ohsawa, T.Oogoe

Accelerator Laboratory, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

H.Okuno

Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

T.Fujita, K.Umemori, K.Yoshida

Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima 739-8526, Japan

R.Hamatsu, K.Sasahara

Department of Physics, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachiojishi, Tokyo 192-0397, Japan

V.Ababiy, A.P.Potylitsin, I.E.Vnukov

Nuclear Physics Institute, Tomsk Polytechnic University, 634050, P.O.Box 25, Tomsk, Russia

Motivation

- ▲ High-intensity positron sources are required for future linear colliders and B-factories.
- ▲ Conventional methods using amorphous heavy metals limit to increase the intensity of primary electron beams due to the heat load on the target.
- New method using the processes of coherent bremsstrahlung (CB) and channeling radiation (CR) is one of the bright schemes for highintensity e⁺ sources.

Motivation (cont.)

- ▲ Theoretically unified treatment taking into account both processes of CR and CB has not yet been established on the simulation.
- ▲ More experimental data are expected to clearly understand the elementary physical processes of the CR and CB, and they are also required to develop the design of a real-type positron source.

Historical View of Our Experiment

Month/Year	Accelerator	Energy [GeV]	Positron Target [mm]
May/1997	KEK Tanashi, ES	1.2	Crystal W (W_c) [1.2]
Apr, Jun/1998	KEK Tsukuba,	3	<i>W_c</i> [1.7]
	Electron Linac		+ Amor. W (W_a) [7]
Nov/1998	KEK Tanashi, ES	0.6, 0.8, 1	W_c [0.4, 1.2, 2.2],
			GaAs [0.36], Diamond[1.1]
Sep, Oct/2000	KEK Tsukuba,	8	W_{c} [2.2],
	Electron Linac		W_c [2.2]+ W_a [5, 10, 15]
Apr/2001	KEK Tsukuba,	8	W _c [2.2], W _c [9]
	Electron Linac		W_c [9]+ W_a [2, 4]

Channeling Radiation & Coherent Bremsstrahlung

New Positron Production Scheme

Experimental Setup

Linac Beam Line & Experimental Setup

Experimental Condition

Electron Beam:

- Beam Energy = 8 GeV
- Angular Spread ~72 mrad (Horizontal), ~15 mrad (Vertical)
- Transverse Beam Size ~1 mm (FWHM) in diameter
- Beam Charge = 0.2 nC/bunch
- Bunch Length (Single Bunch) ~10 ps (FWHM)
- Beam Repetition = 2Hz

Angular Spread of the Electron Beam at the Positron Target

• F ~ 0.1 mrad < Fc (due to multiple scattering by a vacuum window(100mm-thick SUS))

Critical Angle for the Channeling Condition at the Positron Target

• Fc ~ 0.43 mrad @8GeV (Linhard Angle)

Experimental Condition (cont.)

Positron-Production Targets:

- Crystal Tungsten Target : 2.2mm and 9mm thickness
- Amorphous Tungsten Target : 2mm and 4mm thick (for the purpose of hybrid targets)
- Amorphous Tungsten Target: 3-18mm (3mm step) thickness (for the *e*⁺ production yield calibration)

Detected Momentum Range

• *Pe*⁺ <30 MeV/c

Positron Detectors

•Lead-Glass Calorimeter and Acrylic Cherenkov Counter

Beam Monitors

•*Wall-current monitor* for the beam-charge measurement

and screen monitor for the beam-profile measurement

Experimental Results: Rocking Curves (Crystal Axis <111>) for 2.2mmt and 9mmt Wcs

Experimental Results: Momentum dependence of the Positron-Yield Enhancement (=PY_{on-axis}/ PY_{off-axis})

Momentum	Enhancement	Enhancement
[MeV/c]	(2.2mm W_c)	(9mm <i>W</i> _c)
10	6.6 ± 0.1	1.9 ± 0.1
15	6.1 ± 0.1	1.7 ± 0.1
20	5.1 ± 0.1	1.7 ± 0.1

Experimental Results: Momentum dependence of the Positron-Yield Enhancement $(=PY_{on-axis}/PY_{off-axis})$

SAST01@Osaka University, Osaka, October 29-31, 2001 Tsuyoshi Suwada (tsuyoshi.suwada@kek.jp)

Experimental Results: Positron Yields vs. Target Thickness

Experimental Results: Simulation check for amorphous W targets using the EGS4 code

Experimental Results: Experiment vs. Simulation

Conclusions

- ^o Positron production experiment has been successfully performed at the KEKB 8-GeV electron linac.
- ^o Enhancement (En) and momentum dependence of the e⁺ yield from 8-GeV channeling electrons
- $En=5.1 \pm 0.1 \text{ (2.2mmt } W_c), 1.7 \pm 0.1 \text{ (9mmt } W_c)@Pe^+=20 \text{MeV/c}$
- the enhancement decreases as the target thickness increases.
- the positron yield of the 9mmt crystal *W* is slightly larger than that of a 15mmt amorphous *W*.
- the result of the momentum dependence indicates that as the momentum becomes low, the enhancement is getting larger.
- ^o The present simulation results can not agree with the experiment. More sophisticated simulation code is under development.